Advertisement

Measurement of Frame Dragging with Geodetic Satellites Based on Gravity Field Models from CHAMP, GRACE and Beyond

  • Rolf KönigEmail author
  • Ignazio Ciufolini
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 196)

Abstract

The experimental measurement of frame-dragging or the Lense-Thirring (LT) effect based on Satellite Laser Ranging (SLR) observations to the LAGEOS satellites was successfully demonstrated with an accuracy of about 10%. Here we look in detail into the effect of the node drift induced by the time variable part of the C(2,0) term of the gravity field model describing the flattening of the Earth. We demonstrate that errors in C(2,0) can effectively be taken care of by analyzing two satellites for the LT measurement. We also adopt some recent gravity field models in order to independently repeat and extend the LT experiments so far. The gravity field models used for this are derived either partly depending on LAGEOS SLR observations or completely independent from LAGEOS, and based on dedicated gravity field satellite missions like CHAMP, GRACE and GOCE. It turns out that from all the gravity field models tested the claimed accuracy of 10% of the LT measurement can be confirmed.

References

  1. 1.
    A. Einstein, Letter to Ernst Mach, 25 June 1913, in Gravitation ed. by C. Misner, K.S. Thorne, J.A. Wheeler (Freeman, San Francisco, 1973), p. 544Google Scholar
  2. 2.
    J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)Google Scholar
  3. 3.
    K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale University Press, New Haven, 1986)zbMATHGoogle Scholar
  4. 4.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Perez-Mercader, Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279, 2100–2103 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    F.G. Lemoine, S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA (1998)Google Scholar
  8. 8.
    R.L. Spencer, LAGEOS - a geodynamics tool in the making. J. Geol. Educ. 25(2), 38–42 (1977)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    C. Reigber, R. Schmidt, F. Flechtner, R. Koenig, U. Meyer, K.-H. Neumayer, P. Schwintzer, S.Y. Zhu, An Earth gravity field model complete to degree and order 150 from GRACE\(:\) EIGEN-GRACE02S. J. Geodyn. 39(1), 1–10 (2005)CrossRefGoogle Scholar
  12. 12.
    B.D. Tapley, S. Bettadpur, M.M. Watkins, Ch. Reigber, The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    T.V. Martin, W.F. Eddy, D.D. Rowlands, D.E. Pavlis, GEODYN II system description. EG&G Contractor Report, Lanham, MD (1987)Google Scholar
  14. 14.
    S. Zhu, Ch. Reigber, R. Koenig, Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geod. 78(1–2), 103–108 (2004)ADSGoogle Scholar
  15. 15.
    B.E. Schutz, B.D. Tapley, UTOPIA: University of Texas Orbit Processor. Inst. for Advanced Study in Orbital Mechanics, University of Texas at Austin, IASOM TR 80-1 (1980)Google Scholar
  16. 16.
    R. Koenig, B. Moreno-Monge, G. Michalak, Some aspects and perspectives of measuring Lense-Thirring with GNSS and geodetic satellites, in Second International LARES Science Workshop, Accademia dei Lincei, Rome (2012)Google Scholar
  17. 17.
    J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the frame-dragging effect with satellite laser ranging, in Proceedings 16th international workshop on laser ranging, http://cddis.gsfc.nasa.gov/lw16/docs/presentations/sci_3_Ries.pdf. Accessed 30 April 2018
  18. 18.
    I. Ciufolini, A. Paolozzi, E.C. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES space experiment: LARES orbit, error analysis and satellite structure, in John Archibald Wheeler and General Relativity, ed. by I. Ciufolini, R. Matzner (Springer, Berlin, 2010), pp. 371–434CrossRefGoogle Scholar
  19. 19.
    I. Ciufolini, A. Paolozzi, E.C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Eur. Phys. J. C 76, 120 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur. Phys. J. Plus 132, 336 (2017)Google Scholar
  21. 21.
    C. Foerste, S.L. Bruinsma, R. Shako, J.C. Marty, F. Flechtner, O. Abrikosov, C. Dahle, J.M. Lemoine, K.H. Neumayer, R. Biancale, F. Barthelmes, R. Koenig, G. Balmino, EIGEN-6C - A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, vol. 13, EGU2011-3242-2, EGU General Assembly (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZWesslingGermany
  2. 2.Dip. Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  3. 3.Centro FermiRomaItaly

Personalised recommendations