Relativistic Geodesy pp 453-465 | Cite as
Measurement of Frame Dragging with Geodetic Satellites Based on Gravity Field Models from CHAMP, GRACE and Beyond
Abstract
The experimental measurement of frame-dragging or the Lense-Thirring (LT) effect based on Satellite Laser Ranging (SLR) observations to the LAGEOS satellites was successfully demonstrated with an accuracy of about 10%. Here we look in detail into the effect of the node drift induced by the time variable part of the C(2,0) term of the gravity field model describing the flattening of the Earth. We demonstrate that errors in C(2,0) can effectively be taken care of by analyzing two satellites for the LT measurement. We also adopt some recent gravity field models in order to independently repeat and extend the LT experiments so far. The gravity field models used for this are derived either partly depending on LAGEOS SLR observations or completely independent from LAGEOS, and based on dedicated gravity field satellite missions like CHAMP, GRACE and GOCE. It turns out that from all the gravity field models tested the claimed accuracy of 10% of the LT measurement can be confirmed.
References
- 1.A. Einstein, Letter to Ernst Mach, 25 June 1913, in Gravitation ed. by C. Misner, K.S. Thorne, J.A. Wheeler (Freeman, San Francisco, 1973), p. 544Google Scholar
- 2.J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)Google Scholar
- 3.K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale University Press, New Haven, 1986)zbMATHGoogle Scholar
- 4.B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 5.I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)ADSCrossRefGoogle Scholar
- 6.I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Perez-Mercader, Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279, 2100–2103 (1998)ADSCrossRefGoogle Scholar
- 7.F.G. Lemoine, S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt, USA (1998)Google Scholar
- 8.R.L. Spencer, LAGEOS - a geodynamics tool in the making. J. Geol. Educ. 25(2), 38–42 (1977)CrossRefGoogle Scholar
- 9.ILRS. Lageos-1/-2, https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/current_missions/lag1_general.html. Accessed 12 March 2018
- 10.I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004)ADSCrossRefGoogle Scholar
- 11.C. Reigber, R. Schmidt, F. Flechtner, R. Koenig, U. Meyer, K.-H. Neumayer, P. Schwintzer, S.Y. Zhu, An Earth gravity field model complete to degree and order 150 from GRACE\(:\) EIGEN-GRACE02S. J. Geodyn. 39(1), 1–10 (2005)CrossRefGoogle Scholar
- 12.B.D. Tapley, S. Bettadpur, M.M. Watkins, Ch. Reigber, The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004)ADSCrossRefGoogle Scholar
- 13.T.V. Martin, W.F. Eddy, D.D. Rowlands, D.E. Pavlis, GEODYN II system description. EG&G Contractor Report, Lanham, MD (1987)Google Scholar
- 14.S. Zhu, Ch. Reigber, R. Koenig, Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geod. 78(1–2), 103–108 (2004)ADSGoogle Scholar
- 15.B.E. Schutz, B.D. Tapley, UTOPIA: University of Texas Orbit Processor. Inst. for Advanced Study in Orbital Mechanics, University of Texas at Austin, IASOM TR 80-1 (1980)Google Scholar
- 16.R. Koenig, B. Moreno-Monge, G. Michalak, Some aspects and perspectives of measuring Lense-Thirring with GNSS and geodetic satellites, in Second International LARES Science Workshop, Accademia dei Lincei, Rome (2012)Google Scholar
- 17.J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the frame-dragging effect with satellite laser ranging, in Proceedings 16th international workshop on laser ranging, http://cddis.gsfc.nasa.gov/lw16/docs/presentations/sci_3_Ries.pdf. Accessed 30 April 2018
- 18.I. Ciufolini, A. Paolozzi, E.C. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES space experiment: LARES orbit, error analysis and satellite structure, in John Archibald Wheeler and General Relativity, ed. by I. Ciufolini, R. Matzner (Springer, Berlin, 2010), pp. 371–434CrossRefGoogle Scholar
- 19.I. Ciufolini, A. Paolozzi, E.C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Eur. Phys. J. C 76, 120 (2016)ADSCrossRefGoogle Scholar
- 20.I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur. Phys. J. Plus 132, 336 (2017)Google Scholar
- 21.C. Foerste, S.L. Bruinsma, R. Shako, J.C. Marty, F. Flechtner, O. Abrikosov, C. Dahle, J.M. Lemoine, K.H. Neumayer, R. Biancale, F. Barthelmes, R. Koenig, G. Balmino, EIGEN-6C - A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, vol. 13, EGU2011-3242-2, EGU General Assembly (2011)Google Scholar