Multiobjective Optimization in the Energy Sector: Selected Problems and Challenges

  • Carlos Henggeler AntunesEmail author
Part of the Multiple Criteria Decision Making book series (MCDM)


The application of multiobjective models and methods in a vast range of problems in the energy sector has been a consolidated practice in the last four decades. The need to consider explicitly multiple axes of evaluation of the merits of solutions in decision processes, generally involving large investments as well as social and environmental impacts, has led to the recognition of the potential benefits of multiobjective optimization approaches. Trends such as the increasing share of renewable sources in the energy generation matrix, the evolution towards smart grids involving the deployment of information and communication technologies, the dissemination of electric mobility and the consumer empowerment by means of the utilization of demand-side resources introduce challenging problems for which the capability of multiobjective models and methods to explore and provide assistance in the appraisal of well-balanced solutions is of utmost importance. This chapter aims to offer a broad view of some of the most challenging problems concerning the application of multiobjective optimization models and methods in the energy sector, with focus on electricity smart grids, outlining promising research avenues in problems of planning and operational nature.


Energy sector Multiobjective optimization Smart grids 



This work was supported by the Portuguese Foundation for Science and Technology under strategic project grant UID/MULTI/00308/2019 and R&D project grants ESGRIDS (POCI-01-0145-FEDER-016434) and MAnAGER (POCI-01-0145-FEDER-028040).


  1. Alves, M. J., & Antunes, C. H. (2018). A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing. Computers & Operations Research, 92, 130–144.CrossRefGoogle Scholar
  2. Antunes, C. H., & Henriques, C. O. (2016). Multi-objective optimization and multi-criteria analysis models and methods for problems in the energy sector. In M. Ehrgott, J. R. Figueira, & S. Greco (Eds.), Multiple criteria decision analysis: State of the art surveys (2nd ed., Chapter 25, pp. 1067–1165). Springer.Google Scholar
  3. Carpinelli, G., Mottola, F., Proto, D., & Russo, A. (2017). A multi-objective approach for microgrid scheduling. IEEE Transactions on Smart Grid, 8(5), 2109–2118.CrossRefGoogle Scholar
  4. Chiu, W. Y., Sun, H., & Poor, H. V. (2015). A multiobjective approach to multimicrogrid system design. IEEE Transactions on Smart Grid, 6(5), 2263–2272.CrossRefGoogle Scholar
  5. Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681–704.CrossRefGoogle Scholar
  6. Farzin, H., Fotuhi-Firuzabad, M., & Moeini-Aghtaie, M. (2017). A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids. IEEE Transactions on Smart Grid, 8(1), 117–127.CrossRefGoogle Scholar
  7. Gao, Y., Hu, X., Yang, W., Liang, H., & Li, P. (2017). Multi-objective bilevel coordinated planning of distributed generation and distribution network frame based on multiscenario technique considering timing characteristics. IEEE Transactions on Sustainable Energy, 8(4), 1415–1429.CrossRefGoogle Scholar
  8. Li, R., Wang, W., & Xia, M. (2018). Cooperative planning of active distribution system with renewable energy sources and energy storage systems. IEEE Access, 6, 5916–5926.CrossRefGoogle Scholar
  9. Liu, J., & Li, J. (2015). A bi-level energy-saving dispatch in smart grid considering interaction between generation and load. IEEE Transactions on Smart Grid, 6(3), 1443–1452.CrossRefGoogle Scholar
  10. Muralitharan, K., Sakthivel, R., & Shi, Y. (2016). Multiobjective optimization technique for demand side management with load balancing approach in smart grid. Neurocomputing, 177, 110–119.CrossRefGoogle Scholar
  11. Oliveira, C., Coelho, D., & Antunes, C. H. (2016). Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (e3s) trade-offs: A review. Annals of Operations Research, 247(2), 471–502.CrossRefGoogle Scholar
  12. Safdarian, A., Fotuhi-Firuzabad, M., & Lehtonen, M. (2014). A distributed algorithm for managing residential demand response in smart grids. IEEE Transactions on Industrial Informatics, 10(4), 2385–2393.CrossRefGoogle Scholar
  13. Soares, A., Gomes, A., Henggeler Antunes, C., & Oliveira, C. (2017). A customized evolutionary algorithm for multiobjective management of residential energy resources. IEEE Transactions on Industrial Informatics, 13(2), 492–501.Google Scholar
  14. Zhang, B., Dehghanian, P., & Kezunovic, M. (2019). Optimal allocation of PV generation and battery storage for enhanced resilience. IEEE Transactions on Smart Grid, 10(1), 535–545.Google Scholar
  15. Zhang, X., Wang, H., Peng, J., Liu, Y., Wang, G., & Jiang, H. (2018). GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration. Energy, 144, 404–419.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INESC Coimbra, Department of Electrical and Computer EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations