Advertisement

The Desulfurization Pathway in Rhodococcus

  • Shanshan Li
  • Ting MaEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

The emission of sulfur oxides can have harmful effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some bacteria, like Rhodococcus, have been used or studied to upgrading the fossil fuels on sulfur content limitation with their gentle desulfurization and high desulfurizing competence, without lowering the calorific value of the fuel. Recent advances have demonstrated the desulfurization pathway called “4S” pathway, including four enzymes, and the molecular mechanism for biodesulfurization has also been described. In addition, genetic manipulations, such as co-expression of flavin reductases, promoter modification, increasing the expression of key enzymes, expressing of desulfurization enzymes in heterologous hosts, and rearranging the dsz gene cluster were also used to improve sulfur removal efficiencies. In this chapter, we summarize the mechanism of biodesulfurization in Rhodococcus.

Notes

Acknowledgements

We gratefully acknowledge the support for our research from the Natural Science Foundation of Tianjin, China (grant numbers 05YFJMJC00700, 09JCZDJC03200). We also thank the publisher of the American Society of Microbiology and the American Society for Biochemistry and Molecular Biology to offer kindly help with useful pictures.

References

  1. Albano C, Randers-Eichhorn L, Bentley W, Rao G (1998) Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnol Prog 14:351–354PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alejandro DM, Orellana L, Aguirre J, Baeza P, Espinoza G, Canales C, Ojeda J (2014) Biodesulfurization of dibenzothiophene and gas oil using a bioreactor containing a catalytic bed with Rhodococcus rhodochrous immobilized on silica. Biotechnol Lett 36:1649–1652CrossRefGoogle Scholar
  3. Amin GA (2011) Integrated two-stage process for biodesulfurization of model oil by vertical rotating immobilized cell reactor with the bacterium Rhodococcus erythropolis. J Pet Environ Biotechnol 2:107–111Google Scholar
  4. Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698PubMedPubMedCentralCrossRefGoogle Scholar
  5. Atlas RM (1994) Petroleum microbiology. Macmillan Publishing, New YorkGoogle Scholar
  6. Atlas RM, Boron DJ, Deever WR, Johnson AR, McFarland BL, Meyer JA (2001) Method for removing organic sulfur from heterocyclic sulfur containing organic compounds. US patent number H1, p 986Google Scholar
  7. Borgne S, Quintero R (2003) Review: biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169CrossRefGoogle Scholar
  8. Cha H, Wu C, Valdes J, Rao G, Bentley W (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein protein expression and solubility. Biotechnol Bioeng 67:565–574PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chen H, Zhang WJ, Chen JM, Cai YB, Li W (2008) Desulfurization of various organic sulfur compounds and the mixture of DBT + 4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99:3630–3634PubMedCrossRefPubMedCentralGoogle Scholar
  10. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359PubMedCrossRefPubMedCentralGoogle Scholar
  11. Darzins A, Xi L, Childs JD, Monticello DJ, Squires CH (1999) DSZ gene expression in pseudomonas hosts. US Patent No 5952208Google Scholar
  12. Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, al-Hawari J, Grossman MJ, Sankey BM, Lau PC (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several Rhodococci. Appl Environ Microbiol 63:2915–2919PubMedPubMedCentralGoogle Scholar
  13. Derikvand P, Etemadifar Z (2014) Improvement of biodesulfurization rate of alginate immobilized Rhodococcus erythropolis R1. Jundishapur J Microbiol 7:e9123PubMedPubMedCentralCrossRefGoogle Scholar
  14. Derikvand P, Etemadifar Z, Biria D (2014) Taguchi optimization of dibenzothiophene biodesulfurization by Rhodococcus erythropolis, R1 immobilized cells in a biphasic system. Int Biodeter Biodegr 86:343–348CrossRefGoogle Scholar
  15. Dinamarca MA, Rojas A, Baeza P, Espinoza G, Ibacache-Quiroga C, Ojeda J (2014) Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems. Fuel 116:237–241CrossRefGoogle Scholar
  16. Dosomer JP, Dhaese P, Montagu MV (1988) Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J Bacteriol 170:2401–2405CrossRefGoogle Scholar
  17. Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant tween 80 enhances biodesulfurization. Appl Environ Microbiol 72:7390–7393PubMedPubMedCentralCrossRefGoogle Scholar
  18. Galán B, Díaz E, García JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalyst. Environ Microbiol 2:687–694PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulphurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gallardo ME, Ferrandez A, De Lorenzo V, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gaudu P, Touati D, Niviere V, Fontecave M (1994) The NAD(P)H: flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J Biol Chem 269:8182–8185PubMedPubMedCentralGoogle Scholar
  22. Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gray KA, Mrachkoyz GT, Squiresy CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  25. Grossman MJ, Lee MK, Prince RC, Garrett KK, George GN, Pickering IJ (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188PubMedPubMedCentralGoogle Scholar
  26. Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hassan B, Jamshid R, Hossein M, Behnam R, Ayyoob A (2013) Desulfurization activity and reusability of magnetite nanoparticle-coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells. Biotechnol Appl Biochem 60:323–329CrossRefGoogle Scholar
  28. Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246PubMedCrossRefPubMedCentralGoogle Scholar
  29. Inoue A, Horikoshi K (1991) Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J Ferment Bioeng 71:194–196CrossRefGoogle Scholar
  30. Izumi Y, Ohshiro T, Ogino H, Hine Y, Shinao M (1994) Selective desulphurisation of dibenzothiophene by R. erythropolis D-1. Appl Environ Microbiol 60:223–226PubMedPubMedCentralGoogle Scholar
  31. Ji YE, Colston MJ, Cox RA (1994) The ribosomal RNA (rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slowgrowers. Microbiology 140:2829–2840PubMedCrossRefGoogle Scholar
  32. Kawatra SK, Eisele TC (2001) Coal desulfurization, high-efficiency preparation methods. Taylor & Francis, New YorkGoogle Scholar
  33. Kayser KJ (2002) Molecular biological characterization and enhancement of the biodesulfurization (DSZ) pathway. PhD thesis. Illinois Institute of Technology, 106 ppGoogle Scholar
  34. Kertesz L (2001) Building a scientific foundation for prevention. Healthplan 42:44–47PubMedGoogle Scholar
  35. Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kilbane JJ, Bielaga BA (1990) Toward sulfur-free fuels. Chem Tech 20:747–751Google Scholar
  37. Kilbane JJ, Jackowski K (1992) Biodesulphurisation of watersoluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kirimura K, Furuya T, Sato R, Ishii Y, Kino K, Usami S (2002) Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl Environ Microbiol 68:3867–3872PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by single bacterial strain. FEMS Microbiol Lett 187:123–126PubMedCrossRefPubMedCentralGoogle Scholar
  40. Koike H, Sasaki H, Kobori T, Zenno S, Saigo K, Murphy MEP, Adman ET, Tanokura M (1998) 1.8Å crystal structure of the major NAD-(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate- analog binding, and comparison with related flavoproteins. J Mol Biol 280:259–273PubMedCrossRefPubMedCentralGoogle Scholar
  41. Konishi J, Onaka T, Ishii Y, Suzuki M (2000) Demonstration of the carbon-sulfur bond-targeted desulfurization of benzothiophene by thermophile Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kropp KG, Fedorak PM (1998) A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44:605–622PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kropp P, Gerber WD (1998) Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci Lett 257:73–76PubMedCrossRefPubMedCentralGoogle Scholar
  44. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  45. Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2004) Crystallization and preliminary X-ray analyses of desulfurization enzyme DszB and its C27S mutant complexed with biphenyl-2-sulfinic acid. Acta Crystallogr D Biol Crystallogr 60:1636–1638PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′-hydroxybiphenyl-2- sulfinic acid desulfinase. J Boil Chem 281:32534–32539CrossRefGoogle Scholar
  47. Lei X, Squires CH, Monticello DJ, Child D (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75CrossRefGoogle Scholar
  48. Li ZM, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory region of Rhodococcus erythropolis IGTS8. J Bacteriol 178:6409–6418PubMedPubMedCentralCrossRefGoogle Scholar
  49. Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurization treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223:301–307PubMedCrossRefPubMedCentralGoogle Scholar
  50. Li W, Zhang Y, Wang MD, Shi Y (2005a) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  51. Li FL, Xu P, Feng JH, Meng L, Zheng Y, Luo LL, Ma CQ (2005b) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71:276–281PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li GQ, Ma T, Li JH, Li H, Liu RL (2006a) Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli. Acta Microbiol Sin 46:275–279Google Scholar
  53. Li W, Wang MD, Chen H, Chen JM, Shi Y (2006b) Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol Lett 28:1175–1179PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL (2007a) Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71:849–854PubMedCrossRefGoogle Scholar
  55. Li FL, Zhang ZZ, Feng JH, Cai XF, Xu P (2007b) Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127:222–228PubMedCrossRefGoogle Scholar
  56. Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5 and Tn10-derived minitransposons. Methods Enzymol 235:386–405PubMedCrossRefGoogle Scholar
  57. Ma X, Sakanishi K, Mochida I (1994) Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind Eng Chem Res 33:218–222CrossRefGoogle Scholar
  58. Ma CQ, Feng JH, Zeng YY, Cai XF, Sun BP, Zhang ZB, Blankespoor HD, Xu P (2006a) Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65:165–169PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ma T, Li GQ, Li J, Liang FL, Liu RL (2006b) Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28:1095–1100PubMedCrossRefPubMedCentralGoogle Scholar
  60. Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reduced involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184PubMedPubMedCentralCrossRefGoogle Scholar
  61. Matsui T, Hirasawa K, Koizumi KI, Maruhashi K, Kurane R (2001) Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnol Lett 23:1715–1718CrossRefGoogle Scholar
  62. Matsui T, Noda K, Tanaka Y, Maruhashi K, Kurane R (2002) Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Curr Microbiol 45:240–244PubMedCrossRefPubMedCentralGoogle Scholar
  63. McFarland BL, Boron DJ, Deever W, Meyer JA, Johnson AR, Atlas RM (1998) Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit Rev Microbiol 24:99–147PubMedCrossRefPubMedCentralGoogle Scholar
  64. Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chem Tech 28:38–45Google Scholar
  65. Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol 49:756–760PubMedPubMedCentralGoogle Scholar
  66. Noda K, Kimiko W, Kenji M (2002) Cloning of a rhodococcal promoter using a transposon for dibenthiophene biodesulfurization. Biotechnol Letters 24:1875–1882CrossRefGoogle Scholar
  67. Noda K, Watanabe K, Maruhashi K (2003) Isolation of the Pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J Biosci Bioeng 95:504–511PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506PubMedPubMedCentralGoogle Scholar
  69. Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:l–9CrossRefGoogle Scholar
  70. Ohshiro T, Izumi Y (2000) Purification, characterization and crystallization of enzymes for dibenzothiophene desulfurization. Bioseparation 9:185–188PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344CrossRefGoogle Scholar
  72. Ohshiro T, Hirata T, Izumi Y (1995) Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl Microbiol Biotechnol 44:249–252CrossRefGoogle Scholar
  73. Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-l. J Biosci Bioeng 88:610–616PubMedCrossRefGoogle Scholar
  74. Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-Hydroxybiphenyl-2-sulfinate Desulfinase, an Enzyme Involved in the Dibenzothiophene Desulfurization Pathway, from Rhodococcus erythropolis KA2-5-1 by Site-Directed Mutagenesis. Biosci Biotechnol Biochem 71:2815–2821PubMedCrossRefGoogle Scholar
  75. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. IGTS8 (ATCC 53968). Microbiology 143:2961–2973PubMedCrossRefGoogle Scholar
  76. Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulfurization of benzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek 74:119–132PubMedCrossRefPubMedCentralGoogle Scholar
  77. Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. Strain SY1. Appl Environ Microbiol 58:911–915PubMedPubMedCentralGoogle Scholar
  78. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475PubMedPubMedCentralGoogle Scholar
  79. Purdy RF, Lepo JE, Ward B (1993) Biodesulfurization of organicsulfur compounds. Curr Microbiol 27:219–222CrossRefGoogle Scholar
  80. Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (1999) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79CrossRefGoogle Scholar
  81. Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rhee SK, Chang JH, Chan YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331PubMedPubMedCentralGoogle Scholar
  83. Shan GB, Xing JM, Luo MF, Liu HZ, Chen JY (2003) Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization. Biotechnol Lett 25:1977–1981PubMedCrossRefPubMedCentralGoogle Scholar
  84. Shennan JL (1996) Microbial attack on sulfur-containing hydrocarbons, implications for the biodesulphurization of oils and coals. J Chem Technol Biotechnol 67:109–123CrossRefGoogle Scholar
  85. Soleimani M, Bassi A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596CrossRefGoogle Scholar
  86. Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization inbiophasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609PubMedPubMedCentralCrossRefGoogle Scholar
  88. Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase, 2-(2′-hydroxyphenyl) benzenesulfinate desulfinase. Arch Biochem Biophys 415:14–23PubMedCrossRefPubMedCentralGoogle Scholar
  89. Xi L, Squires CH, Monticello DJ, Childs JD (1997) A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89:361–366PubMedCrossRefPubMedCentralGoogle Scholar
  91. Yang J, Hu Y, Zhao D, Wang S, Lau PCK, Marison IW (2007) Two-layer continuous-process design for the biodesulfurization of diesel oils under bacterial growth conditions. Biochem Eng J 37:212–218CrossRefGoogle Scholar
  92. Yu B, Xu P, Shi Q, Ma C (2006a) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58PubMedPubMedCentralCrossRefGoogle Scholar
  93. Yu B, Ma CQ, Zhou WJ, Wang Y, Cai XF, Tao F, Zhang Q, Tong MY, Qu JY, Xu P (2006b) Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258:284–289PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.College of Life SciencesNankai UniversityTianjinChina

Personalised recommendations