Oligotrophic Growth of Rhodococcus

  • Nobuyuki YoshidaEmail author
Part of the Microbiology Monographs book series (MICROMONO, volume 16)


We can relatively easily isolate “super” oligotrophs from various environments, which can grow on minimal medium without additional carbon and energy sources. The super oligotrophs isolated to date have all belonged to the genera Rhodococcus and Streptomyces. This chapter primarily describes the genetics and biochemistry of one of the super oligotrophs, R. erythropolis N9T-4, which was isolated from crude oil. It is suggested that C2 metabolism starting from acetaldehyde is the key to oligotrophic carbon metabolism of N9T-4. Intriguingly, this bacterium is also oligotrophic for nitrogen and sulfur sources. The most unequivocal evidence for the oligotrophy of N9T-4 relates to the utilization of nitrogen, in which ammonium transporter is involved in the incorporation of atmospheric ammonia under oligotrophic conditions. A unique intracellular structure found in the oligotrophically grown super oligotroph is also introduced.


Super oligotroph Rhodococcus erythropolis N9T-4 Carbon dioxide Acetaldehyde Aldehyde dehydrogenase Aldehyde dismutase Ammonium transporter Inorganic polyphosphate Oligobody 


  1. Adroer N, Casas C, de Mas C, Solà C (1990) Mechanism of formaldehyde biodegradation by Pseudomonas putida. Appl Microbiol Biotechnol 33:217–220CrossRefGoogle Scholar
  2. Al-Haideri H, White MA, Kelly DJ (2016) Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni. Environ Microbiol 18:721–735CrossRefGoogle Scholar
  3. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936CrossRefGoogle Scholar
  4. Bonilla-Rosso G, Peimbert M, Alcaraz LD, Hernández I, Eguiarte LE, Olmedo-Alvarez G, Souza V (2012) Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin II: community structure and composition in oligotrophic environments. Astrobiology 12:659–673CrossRefGoogle Scholar
  5. Bury-Moné S, Mendz GL, Ball GE, Thibonnier M, Stingl K, Ecobichon C, Avé P, Huerre M, Labigne A, Thiberge JM, De Reuse H (2008) Roles of alpha and beta carbonic anhydrases of Helicobacter pylori in the urease-dependent response to acidity and in colonization of the murine gastric mucosa. Infect Immun 76:497–509CrossRefGoogle Scholar
  6. Bystrykh LV, Vonck J, van Bruggen EF, van Beeumen J, Samyn B, Govorukhina NI, Arfman N, Duine JA, Dijkhuizen L (1993) Electron microscopic analysis and structural characterization of novel NADP(H)-containing methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol 175:1814–1822CrossRefGoogle Scholar
  7. Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35CrossRefGoogle Scholar
  8. Constant P, Chowdhury SP, Pratscher J, Conrad R (2010) Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol 12:821–829CrossRefGoogle Scholar
  9. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3:251–261CrossRefGoogle Scholar
  10. Figueroa IA, Barnum TP, Somasekhar PY, Carlström CI, Engelbrektson AL, Coates JD (2018) Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci U S A 115:E92–E101CrossRefGoogle Scholar
  11. Greening C, Berney M, Hards K, Cook GM, Conrad R (2014) A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci U S A 111:4257–4261CrossRefGoogle Scholar
  12. Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production of n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68:1192–1195CrossRefGoogle Scholar
  13. Jaureguibeitia A, Saá L, Llama MJ, Serra JL (2007) Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 73:1073–1086CrossRefGoogle Scholar
  14. Kato N, Yamagami T, Shimao M, Sakazawa C (1986) Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61. Eur J Biochem 156:59–64CrossRefGoogle Scholar
  15. Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E (2018) Biotechnological potential of Rhodococcus biodegradative pathways. J Microbiol Biotechnol 28:1037–1051PubMedGoogle Scholar
  16. Kuroda A, Nomura K, Ohtomo R et al (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the lon protease in E. coli. Science 293:705–708CrossRefGoogle Scholar
  17. Kuznetsov S, Dubinina G, Lapteva N (1979) Biology of oligotrophic bacteria. Annu Rev Microbiol 33:377–387CrossRefGoogle Scholar
  18. Matsumoto M, Ueda N, Ono N (1998) Precise measurements of acidic and alkaline gaseous and particulate species in the atmosphere using annular denuder system. Annual Report of Nara Prefectural Institute of Public Health 32:39–46Google Scholar
  19. Matsuoka T, Yoshida N (2018) Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 82:1652–1655CrossRefGoogle Scholar
  20. Meyer A (1904) Orientirende Untersuchungen uber Verbreitung, Morphologie und chemie des volutins. Botanische Zeitung 7:113–152Google Scholar
  21. Mitsui R, Sakai Y, Yasueda H, Kato N (2000) A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19. J Bacteriol 182:944–948CrossRefGoogle Scholar
  22. Nagy I, Verheijen S, De Schrijver A, Van Damme J, Proost P, Schoofs G, Vanderleyden J, De Mot R (1995) Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol: N,N′-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides. Arch Microbiol 163:439–446CrossRefGoogle Scholar
  23. Ohhata N, Yoshida N, Egami H, Katsuragi T, Tani Y, Takagi H (2007) An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil. J Bacteriol 189:6824–6831CrossRefGoogle Scholar
  24. Sahuquillo-Arce JM, Chouman-Arcas R, Molina-Moreno JM, Hernández-Cabezas A, Frasquet-Artés J, López-Hontangas JL (2017) Capnophilic Enterobacteriaceae. Diagn Microbiol Infect Dis 87:318–319CrossRefGoogle Scholar
  25. Siering P, Wolfe G, Wilson M, Yip A, Carey C, Wardman C, Shapiro R, Stedman K, Kyle J, Yuan T (2013) Microbial biogeochemistry of boiling springs lake: a physically dynamic, oligotrophic, low-pH geothermal ecosystem. Geobiology 11:356–376CrossRefGoogle Scholar
  26. Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596CrossRefGoogle Scholar
  27. Steinhauser D, Fernie AR, Araújo WL (2012) Unusual cyanobacterial TCA cycles: not broken just different. Trends Plant Sci 17:503–509CrossRefGoogle Scholar
  28. Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43CrossRefGoogle Scholar
  29. Tian J, Bryk R, Itoh M, Suematsu M, Nathan C (2005a) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of α-ketoglutarate decarboxylase. Proc Natl Acad Sci U S A 102:10670–10675CrossRefGoogle Scholar
  30. Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C (2005b) Mycobacterium tuberculosis appears to lack α-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57:859–868CrossRefGoogle Scholar
  31. Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249CrossRefGoogle Scholar
  32. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400CrossRefGoogle Scholar
  33. Yano T, Yoshida N, Takagi H (2012) Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4. J Biosci Bioeng 114:53–55CrossRefGoogle Scholar
  34. Yano T, Yoshida N, Yu F, Wakamatsu M, Takagi H (2015) The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 99:5627–5637CrossRefGoogle Scholar
  35. Yano T, Funamizu Y, Yoshida N (2016) Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 80:610–613CrossRefGoogle Scholar
  36. Yonemitsu H, Kikuchi Y (2018) Biodegradation of high concentrations of formaldehyde using Escherichia coli expressing the formaldehyde dismutase gene of Methylobacterium sp. FD1. Biosci Biotechnol Biochem 82:49–56CrossRefGoogle Scholar
  37. Yoshida N, Ohhata N, Yoshino Y, Katsuragi T, Tani Y, Takagi H (2007) Screening of carbon dioxide-requiring extreme oligotrophs from soil. Biosci Biotechnol Biochem 71:2830–2832CrossRefGoogle Scholar
  38. Yoshida N, Hayasaki T, Takagi H (2011) Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 75:123–127CrossRefGoogle Scholar
  39. Yoshida N, Inaba S, Takagi H (2014) Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4. J Biosci Bioeng 117:28–32CrossRefGoogle Scholar
  40. Yoshida N, Yano T, Kedo K, Fujiyoshi T, Nagai R, Iwano M, Taguchi E, Nishida T, Takagi H (2017) A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 101:331–340CrossRefGoogle Scholar
  41. Zhang H, Ishige K, Kornberg A (2002) A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci U S A 99:16678–16683CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry and Biochemical Engineering, Graduate School of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations