Advertisement

Plant-Associated Rhodococcus Species, for Better and for Worse

  • Isolde M. Francis
  • Danny Vereecke
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 16)

Abstract

Rhodococcus fascians, causative agent of the leafy gall syndrome, produces a mixture of cytokinins to modify the hormone landscape of its broad range of plant hosts leading to tissue deformations and developmental alterations. Recent developments indicate that the pathogenic nature of these bacteria is superimposed on its plant growth-promoting effect. In the last two decades, its unique position as the only species within the genus able to interact with plants has been overthrown. Indeed, Pistachio Bushy Top Syndrome is an emerging disease linked to the presence of two Rhodococcus species, R. fascians and R. corynebacterioides. Both bacteria would act synergistically to cause the symptoms, giving the prospect of virulence strategies that differ from those of the leafy gall inducers. Additionally, as a result of microbiome research, it is clear that many Rhodococcus species live in close association with plants, and several of them exhibit plant growth-promoting activities. Finally, genome analyses of a collection of R. fascians isolates imply that the taxonomic position of this group of bacteria within the genus will have to be reevaluated, and likely a new genus consisting of several species will be proposed soon.

Keywords

Actinobacteria Phytopathogen Hyperplasia PGPR Phytohormones Fasciation 

References

  1. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, de Melo Rangel W, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1CrossRefGoogle Scholar
  2. Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol 2014:296521PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ampomah OY, Huss-Danell K (2011) Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 34:267–275PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguère S, Vázquez-Boland JA (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8(10):3140–3148PubMedPubMedCentralCrossRefGoogle Scholar
  5. Armstrong DJ, Scarbrough E, Skoog F, Cole DL, Leonard NJ (1976) Cytokinins in Corynebacterium fascians cultures. Isolation and identification of 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine. Plant Physiol 58:749–752PubMedPubMedCentralCrossRefGoogle Scholar
  6. Balázs E, Sziráki I (1974) Altered levels of indoleacetic acid and cytokinin in geranium stems infected with Corynebacterium fascians. Acta Phytopathol Acad Sci Hungaricae 9:287–292Google Scholar
  7. Bafana A (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29:63–74PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baker KF (1950) Bacterial fasciation disease of ornamental plants in California. Plant Dis Rep 34:121–126Google Scholar
  10. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53CrossRefGoogle Scholar
  12. Brown NA (1927) Sweet pea fasciation, a form of crowngall. Phytopathology 17:29–30Google Scholar
  13. Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C, Venturi V (2015) The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front Plant Sci 6:434PubMedPubMedCentralCrossRefGoogle Scholar
  14. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  15. Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH (2017) Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 18:593PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cirou A, Diallo S, Kurt C, Latour X, Faure D (2007) Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ Microbiol 9(6):1511–1522PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cohen MF, Meziane T, Yamasaki H (2004) A photocarotenogenic Rhodococcus sp. isolated from the symbiotic fern Azolla. Endocytobiosis Cell Res 15:350–355Google Scholar
  18. Cohen MF, Yamasaki H (2003) Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 9:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cornelis K, Ritsema T, Nijsse J, Holsters M, Goethals K, Jaziri M (2001) The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. Mol Plant Microbe Interact 14:599–608PubMedCrossRefPubMedCentralGoogle Scholar
  20. Creason AL, Vandeputte OM, Savory EA, Davis EW II, Putnam ML, Hu E, Swader-Hines D, Mol A, Baucher M, Prinsen E, Zdanowska M, Givan SA, El Jaziri M, Loper JE, Mahmud T, Chang JH (2014a) Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS One 9:e101996PubMedPubMedCentralCrossRefGoogle Scholar
  21. Creason AL, Davis EW II, Putnam ML, Vandeputte OM, Chang JH (2014b) Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front Plant Sci 5:406PubMedPubMedCentralCrossRefGoogle Scholar
  22. Crespi M, Messens E, Caplan AB, Van Montagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:795–804PubMedPubMedCentralCrossRefGoogle Scholar
  23. Crespi M, Vereecke D, Temmerman W, van Montagu M, Desomer J (1994) The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J Bacteriol 176(9):2492–2501PubMedPubMedCentralCrossRefGoogle Scholar
  24. Depuydt S, Doležal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D (2008a) Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:1267–1281PubMedPubMedCentralCrossRefGoogle Scholar
  25. Depuydt S, Putnam M, Holsters M, Vereecke D (2008b) Rhodococcus fascians, an emerging threat for ornamental crops. In: Teixeira da Silva JA (ed) Floriculture, ornamental, and plant biotechnology: advances and topical issues, vol 5. Global Science Books, Isleworth, pp 480–489Google Scholar
  26. Depuydt S, De Veylder L, Holsters M, Vereecke D (2009a) Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection. Plant Physiol 149:1387–1398PubMedPubMedCentralCrossRefGoogle Scholar
  27. Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou J-P, Vuylsteke M, Holsters M, Vereecke D (2009b) An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol 149:1366–1386PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dhandapani P, Song J, Novak O, Jameson P (2017) Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann Bot 119(5):841–852PubMedPubMedCentralGoogle Scholar
  29. Dhandapani P, Song J, Novak O, Jameson P (2018) Both epiphytic and endophytic strains of Rhodococcus fascians influence transporter gene expression and cytokinins in infected Pisum sativum L. seedlings. Plant Growth Regul 85:231–242CrossRefGoogle Scholar
  30. Dolzblasz A, Banasiak A, Vereecke D (2018) Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. Planta 247:215–228PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dowson WJ (1942) On the generic name of the Gram-positive bacterial plant pathogens. Trans Br Mycol Soc 25:311–314CrossRefGoogle Scholar
  32. Eason JR, Jameson PE, Bannister P (1995) Virulence assessment of Rhodococcus fascians strains on pea cultivars. Plant Pathol 44:141–147Google Scholar
  33. Eason JR, Morris RO, Jameson PE (1996) The relationship between virulence and cytokinin production by Rhodococcus fascians. Plant Pathol 45:323–331CrossRefGoogle Scholar
  34. Faivre-Amiot A (1967) Quelques observations sur la presence de Corynebacterium fascians (Tilford) Dowson dans les cultures maraichères et florals en France. Phytiatr Phytopharm 16:165–176Google Scholar
  35. Francis I, De Keyser A, De Backer P, Simón-Mateo C, Kalkus J, Pertry I, Ardiles-Diaz W, De Rycke R, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D (2012) pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. Mol Plant Microbe Interact 25(5):637–647PubMedCrossRefPubMedCentralGoogle Scholar
  36. Francis IM, Stes E, Zhang Y, Rangel D, Audenaert K, Vereecke D (2016) Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol 33(5 Pt B):706–717CrossRefGoogle Scholar
  37. Giron D, Glevarec G (2014) Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol 40(7):826–835PubMedCrossRefPubMedCentralGoogle Scholar
  38. Goodfellow M (1984) Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodococcus fascians comb. nov. Syst Appl Microbiol 5(2):225–229CrossRefGoogle Scholar
  39. Gürtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28(3):377–403PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gürtler V, Seviour R (2010) Systematics of members of the genus Rhodococcus (Zopf 1891) Emend Goodfellow et al. 1998. The past, present and future. In: Alvarez HM (ed) Biology of Rhodococcus, Microbiology Monographs, vol 16. Springer, Berlin, pp 1–28CrossRefGoogle Scholar
  41. Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42(2):157–171PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hasuty A, Choliq A, Hidayat I (2018) Production of indole acetic acid (IAA) by Serratia marcescens subsp. marcescens and Rhodococcus aff. Qingshengii. Int J Agric Technol 14(3):299–312Google Scholar
  43. Helgeson JP, Leonard NJ (1966) Cytokinins: indentification of compounds isolated from Corynebacterium fascians. Proc Natl Acad Sci U S A 56:60–63PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hong CE, Jeong H, Jo SH, Jeong JC, Kwon SY, An D, Park JM (2016) A leaf-inhabiting endophytic bacterium, Rhodococcus sp. KB6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata. J Microbiol Biotechnol 26(3):488–492PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hong CE, Jo SH, Moon JY, Lee JS, Kwon SY, Park JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytopathogens. Plant Biotechnol Rep 9(6):451–458CrossRefGoogle Scholar
  46. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667–2677PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van de Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015PubMedCrossRefPubMedCentralGoogle Scholar
  48. Klämbt D, Thies G, Skoog F (1966) Isolation of cytokinins from Corynebacterium fascians. Proc Natl Acad Sci U S A 56:52–59PubMedPubMedCentralCrossRefGoogle Scholar
  49. Klatte S, Jahnke JD, Kroppenstedt RM, Rainey F, Stackebrandt E (1994) Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int J Syst Bacteriol 44(4):627–630CrossRefGoogle Scholar
  50. Kwasiborski A, Mondy S, Chong TM, Barbey C, Chan KG, Beury-Cirou A, Latour X, Faure D (2015) Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum. Heredity 114:476–484PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lacey MS (1939) Studies on a bacterium associated with leafy galls, fasciation and ‘cauliflower’ disease of various plants. Part III. Further isolations, inoculation experiments and cultural studies. Ann Appl Biol 26:262–278CrossRefGoogle Scholar
  52. Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16:282–290PubMedCrossRefGoogle Scholar
  53. Latour X, Barbey C, Chane A, Groboillot A, Burini JF (2013) Rhodococcus erythropolis and its γ-lactone catabolic pathway: an unusual biocontrol system that disrupts pathogen quorum sensing communication. Agronomy 3:816–838CrossRefGoogle Scholar
  54. Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2341PubMedPubMedCentralCrossRefGoogle Scholar
  55. Li J, Zhao GZ, Chen HH, Qin S, Xu LH, Jiang CL, Li WJ (2008) Rhodococcus cercidiphylli sp. nov., a new endophytic actinobacterium isolated from a Cercidiphyllum japonicum leaf. Syst Appl Microbiol 31:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  56. MacArthur I, Anastasi E, Alvarez S, Scortti M, Vázquez-Boland JA (2017) Comparative genomics of Rhodococcus equi virulence plasmids indicates host-driven evolution of the vap pathogenicity island. Genome Biol Evol 9(5):1241–1247PubMedPubMedCentralCrossRefGoogle Scholar
  57. Maes T, Vereecke D, Ritsema T, Cornelis K, Ngo Thi Thu H, Van Montagu M, Holsters M, Goethals K (2001) The att locus of Rhodococcus fascians strain D188 is essential for full virulence on tobacco through the production of an autoregulatory compound. Mol Microbiol 42:13–28PubMedCrossRefPubMedCentralGoogle Scholar
  58. Maropola MKA, Ramond JB, Trindade M (2015) Impact of metagenomics DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117PubMedCrossRefPubMedCentralGoogle Scholar
  59. Miller HJ, Janse JD, Kamerman W, Muller PJ (1980) Recent observations of leafy gall in Liliaceae and some other families. Neth J Plant Pathol 86:55–68CrossRefGoogle Scholar
  60. Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G, Swingle B, Morris CE, Vinatzer BA, Sheppard SK (2016) Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Microb Genom 2:e000089PubMedPubMedCentralGoogle Scholar
  61. Motte H, Galuszka P, Spíchal L, Tarkowski P, Plíhal O, Šmehilová M, Jaworek P, Vereecke D, Werbrouck S, Geelen D (2013) Phenyl-adenine, identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-assisted chemical screen, is a potent compound for shoot regeneration through the inhibition of CYTOKININ OXIDASE/DEHYDROGENASE activity. Plant Physiol 161:1229–1241PubMedPubMedCentralCrossRefGoogle Scholar
  62. Murai N, Skoog F, Doyle ME, Hanson RS (1980) Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Corynebacterium fascians. Proc Natl Acad Sci U S A 77:619–623PubMedPubMedCentralCrossRefGoogle Scholar
  63. Murugappan RM, Benazir Begun S, Usha C, Lok Kirubahar S, Karthikeyan M (2017) Growth promoting and probiotic potential of the endophytic bacterium Rhodococcus globerulus colonizing the medicinal plant Plectranthus amboinicus (Lour.) Spreng. Int J Curr Res Rev 9(14):7–13Google Scholar
  64. Newton AC, Gravouil C, Foutaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:343–359CrossRefGoogle Scholar
  65. Nikolaeva EV, Park S-Y, Kang S, Olson TN, Kim SH (2009) Ratios of cells with and without virulence genes in Rhodococcus fascians populations correlate with degrees of symptom development. Plant Dis 93:499–506PubMedCrossRefPubMedCentralGoogle Scholar
  66. Oduro KA (1975) Factors affecting epidemiology of bacterial fasciation of Chrysanthemum maximum. Phytopathology 65:719–721CrossRefGoogle Scholar
  67. Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu M, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 106:929–934PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P, Depuydt S, Temmerman W, Stes E, De Keyser A, Riefler M, Biondi S, Novák O, Schmülling T, Strnad M, Tarkowski P, Holsters M, Vereecke D (2010) Rhodococcus fascians impacts plant development through the dynamic Fas-mediated production of a cytokinin mix. Mol Plant Microbe Interact 23:1164–1174PubMedCrossRefPubMedCentralGoogle Scholar
  69. Pham TTM, Pimo Rodriguez NJ, Hijri M, Sylvestre M (2015) Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS One 10(5):e0126033PubMedPubMedCentralCrossRefGoogle Scholar
  70. Putnam ML, Miller ML (2007) Rhodococcus fascians in herbaceous perennials. Plant Dis 91(9):1064–1076PubMedCrossRefPubMedCentralGoogle Scholar
  71. Płociniczak T, Fic E, Pacwa-Płociniczak M, Pawlik M, Piotrowska-Seget Z (2017) Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. Int J Phytoremediation 19(7):614–620PubMedCrossRefPubMedCentralGoogle Scholar
  72. Radhika V, Ueda N, Tsuboi Y, Kojima M, Kikuchi J, Kudo T, Sakakibara H (2015) Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiol 169:1118–1126PubMedPubMedCentralCrossRefGoogle Scholar
  73. Randall JJ, Stamler RA, Kallsen CE, Fichtner EJ, Heerema RJ, Cooke P, Francis I (2018) Comment on “Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management”. eLife 7:e35272PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rathbone MP, Hall RH (1972) Concerning the presence of the cytokinin, N6–(12–isopentenyl) adenine in cultures of Corynebacterium fascians. Planta 108:93–102PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L’Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J, Hoskisson PA, Sutcliffe I (2016) Next-generation systematics: an innovative approach to resolve the structure of complex taxa. Sci Rep 6:38392PubMedPubMedCentralCrossRefGoogle Scholar
  77. Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, Creason AL, Belcher MS, Serdani M, Wiseman MS, Grünwald NJ, Putnam ML, Chang JH (2017) Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6:e30925PubMedPubMedCentralCrossRefGoogle Scholar
  78. Scarbrough E, Armstrong DJ, Skoog F, Frihart CR, Leonard NJ (1973) Isolation of cis-zeatin from Corynebacterium fascians cultures. Proc Natl Acad Sci U S A 70:3825–3829PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sing RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937Google Scholar
  80. Stamler RA, Heerema R, Randall JJ (2015a) First report of phytopathogenic Rhodococcus isolates on Pistachio Bushy Top Syndrome ‘UCB-1’ rootstock in New Mexico. Plant Dis 99:1854CrossRefGoogle Scholar
  81. Stamler RA, Kilcrease J, Kallsen C, Fichtner EJ, Cooke P, Heerema RJ, Randall JJ (2015b) First report of Rhodococcus isolates causing Pistachio Bushy Top Syndrome on ‘UCB-1’ rootstock in California and Arizona. Plant Dis 99:1468–1476PubMedCrossRefPubMedCentralGoogle Scholar
  82. Stamler RA, Vereecke D, Zhang Y, Schilkey F, Devitt N, Randall JJ (2016) Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2. Genome Announc 4:e00495PubMedPubMedCentralCrossRefGoogle Scholar
  83. Stange RR, Jeffares D, Young C, Scott DB, Eason JR, Jameson PE (1996) PCR amplification of the fas-1 gene for detection of virulent strains of Rhodococcus fascians. Plant Pathol 45:407–417CrossRefGoogle Scholar
  84. Stes E, Biondi S, Holsters M, Vereecke D (2011a) Bacterial and plant signal integration via D3-type cyclins enhances symptom development in the Arabidopsis-Rhodococcus fascians interaction. Plant Physiol 156:712–725PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D (2015) Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot 66(16):5123–5134PubMedPubMedCentralCrossRefGoogle Scholar
  86. Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D (2013) The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol Lett 342:187–194PubMedCrossRefPubMedCentralGoogle Scholar
  87. Stes E, Prinsen E, Holsters M, Vereecke D (2012) Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. Plant J 70:513–527PubMedCrossRefPubMedCentralGoogle Scholar
  88. Stes E, Vandeputte OM, El Jaziri ME, Holsters M, Vereecke D (2011b) A successful bacterial coup d’état: how Rhodococcus fascians redirects plant development. Annu Rev Phytopathol 49:69–86PubMedCrossRefPubMedCentralGoogle Scholar
  89. Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625PubMedPubMedCentralCrossRefGoogle Scholar
  90. Temmerman W, Vereecke D, Dreesen R, van Montagu M, Holsters M, Goethals K (2000) Leafy gall formation is controlled by fasR, an AraC-type regulatory gene in Rhodococcus fascians. J Bacteriol 182(20):5832–5840PubMedPubMedCentralCrossRefGoogle Scholar
  91. Thimann KV, Sachs T (1966) The role of cytokinins in the “fasciation” disease caused by Corynebacterium fascians. Am J Bot 53:731–739CrossRefGoogle Scholar
  92. Tilford PE (1936) Fasciation of sweet peas caused by Phytomonas fascians n. sp. J Agric Res 53:383–394Google Scholar
  93. Toussaint JP, Pham TTM, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603PubMedCrossRefPubMedCentralGoogle Scholar
  94. Traw MB, Kniskern JM, Bergelson J (2007) SAR increases fitness of Arabidopsis thaliana in the presence of natural bacterial populations. Evolution 61(10):2444–2449PubMedCrossRefPubMedCentralGoogle Scholar
  95. Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychotropic Rhodococcus erythropolis MtCC 7905. J Basic Microbiol 47:513–517PubMedCrossRefPubMedCentralGoogle Scholar
  96. van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  97. Vereecke D (2018) Comment on “Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management”. eLife 7:e35238PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vereecke D, Cornelis K, Temmerman W, Jaziri M, Van Montagu M, Holsters M, Goethals K (2002) Chromosomal locus that affects the pathogenicity of Rhodococcus fascians. J Bacteriol 184:1112–1120PubMedPubMedCentralCrossRefGoogle Scholar
  99. von Bargen K, Haas A (2009) Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 33:870–891CrossRefGoogle Scholar
  100. Weinthal D, Barash I, Panijel M, Valinsky L, Gaba V, Manulis-Sasson S (2007) Distribution and replication of the pathogenicity plasmid pPATH in diverse populations of the gall-forming bacterium Pantoea agglomerans. Appl Environ Microbiol 73:7552–7561PubMedPubMedCentralCrossRefGoogle Scholar
  101. Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microbiol Biotechnol 6(3):288–299CrossRefGoogle Scholar
  102. Zhang Y, Bignell DR, Zuo R, Fan Q, Huguet-Tapia JC, Ding Y, Loria R (2016) Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp. Mol Plant Microbe Interact 29:640–650PubMedCrossRefPubMedCentralGoogle Scholar
  103. Zhang Y, Loria R (2017) Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands. Mol Plant Microbe Interact 30:72–82PubMedCrossRefPubMedCentralGoogle Scholar
  104. Zhao GZ, Li J, Zhu WY, Tian SZ, Zhao LX, Yang LL, Xu LH, Li WJ (2012) Rhodococcus artemisiae sp. nov., an endophytic actinobacterium isolated from the pharmaceutical plant Artemisia annua L. Int J Syst Evol Microbiol 62:900–905PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isolde M. Francis
    • 1
  • Danny Vereecke
    • 2
  1. 1.Department of BiologyCalifornia State University BakersfieldBakersfieldUSA
  2. 2.Department of Plant and Crop, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations