Advertisement

Defining the Pedestrian Fundamental Diagram

  • Ernst BosinaEmail author
  • Ulrich Weidmann
Conference paper

Abstract

First introduced in vehicular traffic, the fundamental diagram is now also used widely in pedestrian transport to describe the relationship between speed, flow, and density. Various equations have been proposed, which often exhibit strong differences. So far, several parameters that influence the pedestrian fundamental diagram have been identified. These parameters do not, however, explain the differences in proposed representations of the fundamental diagrams.

Examining the literature, it becomes obvious that even though the concept is applied widely, a detailed and commonly accepted definition of the fundamental diagram for pedestrians is missing. Thus, the term “fundamental diagram” is used to describe different speed–density or flow–density relations. Without a proper definition, also the measurement and data evaluation methods differ strongly, which is then reflected in the resulting fundamental diagram curves.

This contribution aims at providing a definition for the pedestrian fundamental diagram. Starting from its origin as a model for pedestrian flow, its background and area of application are discussed. Based on these fundamental insights, a definition for the pedestrian fundamental diagram is proposed. An important aspect of the fundamental diagram concept is its stochastic nature. As the flow at a specific density is not constant, but shows certain variations over time, the fundamental diagram can either be described by its mean value or by using a probabilistic approach. In this contribution, an extension of the fundamental diagram to include its stochastic nature is discussed.

References

  1. 1.
    Bellomo, N., Piccoli, B., Tosin, A.: Modeling crows dynamics from a complex system viewpoint. Math. Models Methods Appl. Sci. 22(suppl. 02), 1230004 (2012). https://doi.org/10.1142/S0218202512300049 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bosina, E., Weidmann, U.: Generic description of the pedestrian fundamental diagram. In: Song, W., Ma, J. Fu, L. (eds.) Proceeding of Pedestrian and Evacuation Dynamics 2016, pp. 548–555. University of Science and Technology of China Press, Hefei (2016)Google Scholar
  3. 3.
    Bosina, E., Weidmann, U.: Estimating pedestrian speed using aggregated literature data. Phys. A Stat. Mech. Appl. 468, 1–29 (2017). https://doi.org/10.1016/j.physa.2016.09.044 CrossRefGoogle Scholar
  4. 4.
    Daamen, W.: Modelling passenger flows in public transport facilities. Trail Thesis Series, Netherlands TRAIL Research School, Delft (2004)Google Scholar
  5. 5.
    Daamen, W., Hoogendoorn, S.P., Bovy, P.H.: First-order pedestrian traffic flow theory. Transp. Res. Rec. J. Transp. Res. Board 1934, 43–52 (2005). https://doi.org/10.3141/1934-05 CrossRefGoogle Scholar
  6. 6.
    Evans, H.K. (ed.): Traffic Engineering Handbook, 2nd edn. Institute of Traffic Engineers, New Haven (1950)Google Scholar
  7. 7.
    Fruin, J.J.: Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planner, New York (1971)Google Scholar
  8. 8.
    Gates, T.J., Noyce, D.A., Bill, A.R., Van Ee, N.: Recommended walking speeds for timing of pedestrian clearance intervals based on characteristics of the pedestrian population. Transp. Res. Rec. J. Transp. Res. Board 1982, 38–47 (2006). https://doi.org/10.3141/1982-07 CrossRefGoogle Scholar
  9. 9.
    Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, Washington, DC, vol. 14, pp. 448–477 (1935)Google Scholar
  10. 10.
    Haight, F.A.: Mathematical Theories of Traffic Flow. Mathematics in Science and Engineering, vol. 7. Elsevier Science, Amsterdam (1963)Google Scholar
  11. 11.
    Johansson, A.F.: Data-Driven Modeling of Pedestrian Crowds. Dissertation, Technische Universitaet Dresden, Dresden (2009)Google Scholar
  12. 12.
    Johansson, A., Helbing, D., Al-Abideen, H.Z., Al-Bosta, S.: From crowd dynamics to crowd safety: a video-based analysis. Adv. Complex Syst. 11(4), 497–527 (2008). https://doi.org/10.1142/S0219525908001854 CrossRefGoogle Scholar
  13. 13.
    Kaakai, F., Hayat, S., El Moudni, A.: A hybrid Petri nets-based simulation model for evaluating the design of railway transit stations. Simul. Model. Pract. Theory 15(8), 935–969 (2007). https://doi.org/10.1016/j.simpat.2007.05.003 CrossRefGoogle Scholar
  14. 14.
    Kladek, H.: Ueber die Geschwindigkeitscharakteristik auf Stadtstraßenabschnitten. Dissertation, Hochschule fuer Verkehrswesen “Friedrich List”, Dresden (1966)Google Scholar
  15. 15.
    Kretz, T., Lohmiller, J., Schlaich, J.: The inflection point of the speed-density relation and the social force model. Collect. Dyn. 1(0), 1–27 (2016). https://doi.org/10.17815/CD.2016.6 CrossRefGoogle Scholar
  16. 16.
    Kuhne, R.D.: Greenshields’ legacy: highway traffic. In: 75 Years of the Fundamental Diagram for Traffic Flow Theory: Greenshields Symposium. Transportation Research E-Circular, vol. E-C149, pp. 3–10. Transportation Research Board, Woods Hole (2011)Google Scholar
  17. 17.
    Nikolic, M., Bierlaire, M., Farooq, B., de Lapparent, M.: Probabilistic speed-density relationship for pedestrian traffic. Transp. Res. Part B Methodol. 89, 58–81 (2016). https://doi.org/10.1016/j.trb.2016.04.002 CrossRefGoogle Scholar
  18. 18.
    Oeding, D.: Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fussgaengerverkehrs. Dissertation, Technische Hochschule Carolo-Wilhelmina zu Braunschweig, Braunschweig (1963)Google Scholar
  19. 19.
    Parisi, D.R., Gilman, M., Moldovan, H.: A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Phys. A Stat. Mech. Appl. 388(17), 3600–3608 (2009). https://doi.org/10.1016/j.physa.2009.05.027 CrossRefGoogle Scholar
  20. 20.
    Predtecenskij, W.M., Milinskij, A.I.: Personenstroeme in Gebaeuden: Berechnungsmethoden fuer die Projektierung, 1st edn. Verlagsgesellschaft Rudolf Mueller, Koeln-Braunsfeld (1971)Google Scholar
  21. 21.
    Sharma, S.C., Oh, J.Y.: Prediction of design hourly volume from road users’ perspective. J. Transp. Eng. 115(6), 646–660 (1989)CrossRefGoogle Scholar
  22. 22.
    Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Phys. A Stat. Mech. Appl. 389(9), 1902–1910 (2010). https://doi.org/10.1016/j.physa.2009.12.015 CrossRefGoogle Scholar
  23. 23.
    Venuti, F., Bruno, L.: Crowd-structure interaction in lively footbridges under synchronous lateral excitation: a literature review. Phys. Life Rev. 6(3), 176–206 (2009). https://doi.org/10.1016/j.plrev.2009.07.001 CrossRefGoogle Scholar
  24. 24.
    Weidmann, U.: Transporttechnik der Fussgaenger - Transporttechnische Eigenschaften des Fussgaengerverkehrs (Literaturauswertung), 2nd edn. No. 90 in Schriftenreihe des IVT. Institut fuer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau, ETH Zurich, Zuerich (1993).  https://doi.org/10.3929/ethz-a-000687810

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ETH Zurich, Institute for Transport Studies and Systems (IVT)ZurichSwitzerland

Personalised recommendations