Pedestrian Flow Through Complex Infrastructure, Experiments, and Mass-Transport Processes

  • Pavel HrabákEmail author
  • Marek Bukáček
  • Peter M. Kielar
  • André Borrmann
Conference paper


Simple mass-transport model is used to describe the phenomenon of decreasing bottleneck flow during egress of pedestrians through complex infrastructure. The considered mass-transport model combines the macroscopic hydrodynamics approach with concept of queuing processes (thus belongs to the class of hand-calculation models). The realization of such process can be described by means of temporal evolution of the flow through individual bottlenecks and number of pedestrians in front of given bottleneck. These two state variables are used to compare the model prediction with experimental data from two original experiments. The commonly used approach of constant width-related bottleneck capacity cannot capture the observed decrease of flow caused by the loss of motivation while the room is getting empty. Therefore, the dynamical part of the bottleneck capacity derived from the slope of the temporal evolution of the crowd size has been introduced, in order to capture the phenomenon.



This work was supported by the Czech Science Foundation under grant GA15-15049S and by the internal grant SGS15/214/OHK4/3T/14 of the Czech Technical University in Prague.


  1. 1.
    Bukáček, M., Hrabák, P., Krbálek, M.: Experimental study of phase transition in pedestrian flow. In: Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.) Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, vol. 2, pp. 105–113. Elsevier Science B.V., Amsterdam (2014). Google Scholar
  2. 2.
    Candy, M.N., Chow, W.: A brief review on the time line concept in evacuation. Int. J. Archit. Sci. 7(1), 1–13 (2006)Google Scholar
  3. 3.
    Liao, W., Tordeux, A., Seyfried, A., Chraibi, M., Drzycimski, K., Zheng, X., Zhao, Y.: Measuring the steady state of pedestrian flow in bottleneck experiments. Phys. A Stat. Mech. Appl. 461, 248–261 (2016). CrossRefGoogle Scholar
  4. 4.
    Porzycki, J., Hrabák, P., Bukáček, M., Was, J., Lubaś, R.: Data driven method of pedestrian flow estimation for evacuation scenario using queuing model. In: 23rd International Workshop of the European Group for Intelligent Computing in Engineering, EG-ICE 2016 (2016)Google Scholar
  5. 5.
    Rogsch, C., Weigel, H., Klingsch, W.: Hand-Calculation Methods for Evacuation Calculation–Last Chance for an Old-Fashioned Approach or a Real Alternative to Microscopic Simulation Tools? pp. 523–528. Springer, Berlin (2010). Google Scholar
  6. 6.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications, pp. 3142–3176. Springer, New York (2009). CrossRefGoogle Scholar
  7. 7.
    Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier Science B. V., Amsterdam (2010). zbMATHGoogle Scholar
  8. 8.
    Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sci. 43(3), 395–406 (2009). CrossRefGoogle Scholar
  9. 9.
    Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Phys. A Stat. Mech. Appl. 389(9), 1902–1910 (2010). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pavel Hrabák
    • 1
    Email author
  • Marek Bukáček
    • 1
  • Peter M. Kielar
    • 2
  • André Borrmann
    • 2
  1. 1.Faculty of Information TechnologyCzech Technical University in PraguePrague 6Czech Republic
  2. 2.Technische Universität MünchenMunichGermany

Personalised recommendations