Numerical Comparison Between Traffic Flow Models with and Without Adaptation Behavior

  • Alma Rosa MéndezEmail author
  • Rosa María Velasco
  • Wilson MarquesJr.
Conference paper


When over-acceleration and adaptation effects are present in traffic situations which involve a mixture of vehicle classes, microscopic effects translate in the appearance of interesting traffic patterns, including the synchronized flow phase. The establishment of this situation has been studied in the literature. The aim of the present work is to compare numerically two different kinetic based models for a two-class system of aggressive drivers. Model I considers the adaptation effect whereas Model II does not allow its presence. As far as a numerical comparison concerns, it is only in Model I where traffic breakdown appears.



The authors acknowledge support from CONACyT through grant number CB2015/251273.


  1. 1.
    Bellomo, N., Delitala, M.: On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling. Math. Models Methods App. Sci. 12(12), 1801–1843 (2002)CrossRefGoogle Scholar
  2. 2.
    Bellomo, N., Marasco, A., Romano, A.: From the modelling of driver’s behavior to hydrodynamic models and problems of traffic flow. Nonlinear Anal. Real World Appl. 3, 339–363 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berg, P., Mason, A., Woods, A.: Continuum approach to car-following models. Phys. Rev. E 61(2), 1056–1066 (2000)CrossRefGoogle Scholar
  4. 4.
    Hoogendoorn, S., Bovy, P.: Modeling multiple user-class traffic. Transp. Res. Rec. J. Transp. Res. Board 1644, 57–69 (1998)CrossRefGoogle Scholar
  5. 5.
    Kerner, B.S., Klenov, L.: Phase transitions in traffic flow on multilane roads. Phys. Rev. E 80, 056101 (2009)CrossRefGoogle Scholar
  6. 6.
    Kerner, B.S., Konhauser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), R2335–R2338 (1993)CrossRefGoogle Scholar
  7. 7.
    Marques, J.W., Velasco, R.M., Méndez, A.R.: A multi-class vehicular flow model for aggressive drivers. In: Knoop, V.L., Daamen, W. (eds.) Traffic and Granular Flow’15, pp. 475–482. Springer, Berlin (2016). CrossRefGoogle Scholar
  8. 8.
    Méndez, A.R., Velasco, R.M.: Kerner’s free-synchronized phase transition in a macroscopic traffic flow model with two classes of drivers. J. Phys. A Math. Theor. 46, 462001 (2013). MathSciNetCrossRefGoogle Scholar
  9. 9.
    Méndez, A.R., Velasco, R.M.: The stability analysis of a macroscopic traffic flow model with two-classes of drivers. In: Chraibi, M. et al. (ed.) Traffic and Granular Flow’13, pp. 525–531. Springer, Berlin (2015). Google Scholar
  10. 10.
    Méndez, A.R., Velasco, R.M.: The onset of traffic phases in highways: a two vehicle-class macroscopic model. Int. J. Pure Appl. Math. 112(3), 531–556 (2017). Google Scholar
  11. 11.
    van Wageningen-Kessels, F., van Lint, H., Vuik, K., Hoogendoorn, S.: Genealogy of traffic flow models. EURO J. Transp. Logist. 4(4), 445–473 (2015)CrossRefGoogle Scholar
  12. 12.
    Velasco, R.M., Marques Jr., W.: Navier-Stokes-like equations for traffic flow. Phys. Rev. E 72, 046102 (2005). MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alma Rosa Méndez
    • 1
    Email author
  • Rosa María Velasco
    • 2
  • Wilson MarquesJr.
    • 3
  1. 1.Departamento de Matemáticas Aplicadas y SistemasUniversidad Autónoma MetropolitanaCuajimalpaMexico
  2. 2.Departamento de FísicaUniversidad Autónoma MetropolitanaIztapalapaMexico
  3. 3.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations