Microscopic Jam Tail Warning for Automated Driving

  • Sven-Eric MolzahnEmail author
  • Boris S. Kerner
  • Hubert Rehborn
Conference paper


We perform a spatiotemporal differentiation between two different phases in congested traffic at the upstream front of the congested pattern: (1) the wide moving jam phase (J) and (2) synchronized flow phase (S) as introduced in the three-phase theory by Kerner. With this approach one can derive a conclusion how dangerous certain parts of the congested pattern really are and decide whether oncoming vehicles should be warned with a jam tail warning system. Each of the probe vehicles can distinguish either F→J or F→S transitions through a method for traffic phase identification. With the detailed information about the phase transitions happening at the upstream front of the congested pattern, the automated vehicle can drive safer and more comfortable while maintaining an unobtrusive behavior approaching traffic congestion. In our study made in this paper, empirical data is obtained through the use of probe vehicles with an average frequency of about 10 s. This allows us to reconstruct the F→J or F→S transitions over time at the upstream front of empirical congested patterns with a high quality that is sufficient for microscopic jam warning for automated vehicles.



We thank our partners for their support in the project “MEC-View—Object detection for automated driving based on Mobile Edge Computing,” funded by the German Federal Ministry of Economic Affairs and Energy.


  1. 1.
    Bogenberger, K., Dinkel, A., Totzke, I., Naujoks, F., Mühlbacher, D.: Sicherheitswirkungen von Verkehrsinformationen. Entwicklungen und Evaluation verschiedener Warnkonzepte fuer Stauendewarnungen. Berichte der Bundesanstallt für Straßenwesen. Unterreihe Fahrzeugtechnik (84) (2012)Google Scholar
  2. 2.
    Statistisches Bundesamt: Verkehrsunfälle 2016 (2017)Google Scholar
  3. 3.
    Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)CrossRefGoogle Scholar
  4. 4.
    Kerner, B.S.: Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-phase Traffic Theory. Springer Science & Business Media, Berlin (2009)CrossRefGoogle Scholar
  5. 5.
    Kerner, B.S.: Breakdown in Traffic Networks: Fundamentals of Transportation Science. Springer, Berlin (2017)CrossRefGoogle Scholar
  6. 6.
    Kerner, B.S., Rehborn, H., Schäfer, R.P., Klenov, S.L., Palmer, J., Lorkowski, S., Witte, N.: Traffic dynamics in empirical probe vehicle data studied with three-phase theory: spatiotemporal reconstruction of traffic phases and generation of jam warning messages. Physica A 392(1), 221–251 (2013)CrossRefGoogle Scholar
  7. 7.
    Klunder, G.A., Taale, H., Hoogendoorn, S.P.: The impact of loop detector distance and floating car data penetration rate on queue tail warning. In: 3rd International Conference on Models and Technologies for Intelligent Transport Systems, Dresden, Germany, 2–4 December 2013Google Scholar
  8. 8.
    Molzahn, S.E., Rehborn, H., Koller, M.: Zeitlich-räumliche Erkennung von Stauenden für die assistierte Verzögerung von Fahrzeugen. VDI-Berichte (2016)Google Scholar
  9. 9.
    Rempe, F., Franeck, P., Fastenrath, U., Bogenberger, K.: Online freeway traffic estimation with real floating car data. In: IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 1838–1843. IEEE, Piscataway (2016)Google Scholar
  10. 10.
    Rempe, F., Franeck, P., Fastenrath, U., Bogenberger, K.: A phase-based smoothing method for accurate traffic speed estimation with floating car data. Transp. Res. C Emerg. Technol. 85, 644–663 (2017)CrossRefGoogle Scholar
  11. 11.
    Treiber, M., Helbing, D.: An adaptive smoothing method for traffic state identification from incomplete information. In: Interface and Transport Dynamics, pp. 343–360. Springer, Berlin (2003)Google Scholar
  12. 12.
    Wiles, P.B., Cooner, S., Walters, C., Pultorak, E.: Advance warning of stopped traffic on freeways: current practices and field studies of queue propagation speeds. Technical Report (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sven-Eric Molzahn
    • 1
    Email author
  • Boris S. Kerner
    • 2
  • Hubert Rehborn
    • 1
  1. 1.Daimler AG, RD/USN, HPC 059-X901SindelfingenGermany
  2. 2.Physics of Transport and TrafficDuisburgGermany

Personalised recommendations