• Paul J. BryarEmail author
  • David Gu
  • Samantha Agron
  • Sarah E. Eichinger


A fully developed eye has three layers: the outer layer is composed of the cornea and sclera; the middle layer is the uvea, which comprises the iris, ciliary body, and choroid; and the inner layer is the retina. The lens is suspended from the ciliary body by numerous zonules. Aqueous is a liquid substance that fills the anterior part of the eye, and vitreous is a gelatinous substance that fills the posterior part of the eye. Conjunctiva is a membranous structure that covers the anterior sclera and the posterior surface of the eyelids. Six extraocular muscles attach to each eye, and the optic nerve (along with its vasculature) exits through an opening in the posterior eye wall. This chapter reviews the development of the structures of the eye and the microscopic appearance of these structures throughout the fetal period.


Ocular embryology Ocular histology Eye 


  1. 1.
    Sowden JC. Development of the eye. In: Standring S, editor. Grays anatomy: the anatomical basis of clinical practice. 41st ed. Amsterdam: Elsevier Limited; 2016. p. 661–5.Google Scholar
  2. 2.
    Ovalle WK, Nahirney PC. Eye and adnexa. In:Netters essential histology. Philadelphia: Elsevier/Saunders; 2013. p. 431–51.Google Scholar
  3. 3.
    Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Larsen’s human embryology. 4th ed. Philadelphia: Elsevier/Churchill Livingstone; 2008. p. 488–500.Google Scholar
  4. 4.
    Secker GA, Daniels JT. Limbal epithelial stem cells of the cornea. 2009 Jun 30. In:StemBook [Internet]. Cambridge, MA: Harvard Stem Cell Institute; 2008. Available from: Scholar
  5. 5.
    Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol. 1982;100:1942–7.CrossRefGoogle Scholar
  6. 6.
    Bahn CF, Glassman RM, MacCallum DK, Lillie JH, Meyer RF, Robinson BJ, Rich NM. Postnatal development of corneal endothelium. Invest Ophthalmol Vis Sci. 1986;27:44–51.PubMedGoogle Scholar
  7. 7.
    Wörner CH, Olguín A, Ruíz-García JL, Garzón-Jiménez N. Cell pattern in adult human corneal endothelium. PLoS One. 2011;6:e19483.CrossRefGoogle Scholar
  8. 8.
    Sainz de la Maza M, Tauber J, Foster CS. The sclera. New York: Springer Science & Business Media; 2012.CrossRefGoogle Scholar
  9. 9.
    Sellheyer K, Spitznas M. Development of the human sclera. A morphological study. Graefes Arch Clin Exp Ophthalmol. 1988;226:89–100.CrossRefGoogle Scholar
  10. 10.
    Bailey AJ. Structure, function and ageing of the collagens of the eye. Eye (Lond). 1987;1:175–83.CrossRefGoogle Scholar
  11. 11.
    Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91:326–35.CrossRefGoogle Scholar
  12. 12.
    Davis-Silberman N, Ashery-Padan R. Iris development in vertebrates; genetic and molecular considerations. Brain Res. 2008;1192:17–28.CrossRefGoogle Scholar
  13. 13.
    Beebe DC. Development of the ciliary body: a brief review. Trans Ophthalmol Soc U K. 1986;105:123–30.PubMedGoogle Scholar
  14. 14.
    Peces-Peña MD, de la Cuadra-Blanco C, Vicente A, Mérida-Velasco JR. Development of the ciliary body: morphological changes in the distal portion of the optic cup in the human. Cells Tissues Organs. 2013;198:149–59.CrossRefGoogle Scholar
  15. 15.
    Shi Y, Tu Y, De Maria A, Mecham RP, Bassnett S. Development, composition, and structural arrangements of the ciliary zonule of the mouse. Invest Ophthalmol Vis Sci. 2013;54:2504–15.CrossRefGoogle Scholar
  16. 16.
    Qi Y, Li FM. The embryonic development of iridial muscles [Article in Chinese]. Zhonghua Yan Ke Za Zhi. 1991;27:295–8.PubMedGoogle Scholar
  17. 17.
    Link BA, Nishi R. Development of the avian iris and ciliary body: mechanisms of cellular differentiation during the smooth-to-striated muscle transition. Dev Biol. 1998;203:163–76.CrossRefGoogle Scholar
  18. 18.
    Mann IC. The development of the human iris. Br J Ophthalmol. 1925;9:495–512.CrossRefGoogle Scholar
  19. 19.
    Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol. 2011;22:314–24.CrossRefGoogle Scholar
  20. 20.
    Gage PJ, Zacharias AL. Signaling “cross-talk” is integrated by transcription factors in the development of the anterior segment in the eye. Dev Dyn. 2009;238:2149–62.CrossRefGoogle Scholar
  21. 21.
    Stenkamp DL. Development of the vertebrate eye and retina. In: Hejtmancik JF, Nickerson JM, editors. Progress in molecular biology and translational science. London: Elsevier/Academic Press; 2015. p. 397–414.Google Scholar
  22. 22.
    Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E. Embryology and early development of the eye and adnexa. In:The eye: basic sciences in practice. 4th ed. Edinburg: Elsevier; 2016. p. 103–29.CrossRefGoogle Scholar
  23. 23.
    Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.CrossRefGoogle Scholar
  24. 24.
    Jakobiec FA. Ocular anatomy, embryology and teratology. Philadelphia: Harpercollins; 1982.Google Scholar
  25. 25.
    Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. 2016;51:1–40.CrossRefGoogle Scholar
  26. 26.
    Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology. 1984;91:603–12.CrossRefGoogle Scholar
  27. 27.
    Donner AL, Episkopou V, Maas RL. Sox2 and Pou2f1 interact to control lens and olfactory placode development. Dev Biol. 2007;303:784–99.CrossRefGoogle Scholar
  28. 28.
    Apple DJ, Rabb MF. Ocular pathology: clinical applications and self-assessment. 5th ed. St. Louis: Mosby; 1997.Google Scholar
  29. 29.
    Swindell EC, Liu C, Shah R, Smith AN, Lang RA, Jamrich M. Eye formation in the absence of retina. Dev Biol. 2008;322:56–64.CrossRefGoogle Scholar
  30. 30.
    Cvekl A, McGreal R, Liu W. Lens development and crystallin gene expression. In: Hejtmancik JF, Nickerson JM, editors. Progress in molecular biology and translational science. London: Elsevier/Academic Press; 2015. p. 129–67.Google Scholar
  31. 31.
    Andley UP. Crystallins in the eye: function and pathology. Prog Retin Eye Res. 2007;26:78–98.CrossRefGoogle Scholar
  32. 32.
    Shastry BS. Persistent hyperplastic primary vitreous: congenital malformation of the eye. Clin Exp Ophthalmol. 2009;37:884–90.CrossRefGoogle Scholar
  33. 33.
    Sellheyer K, Spitznas M. Ultrastructure of the human posterior tunica vasculosa lentis during early gestation. Graefes Arch Clin Exp Ophthalmol. 1987;225:377–83.CrossRefGoogle Scholar
  34. 34.
    Mitchell CA, Risau W, Drexler HC. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn. 1998;213:322–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul J. Bryar
    • 1
    Email author
  • David Gu
    • 2
  • Samantha Agron
    • 2
  • Sarah E. Eichinger
    • 2
  1. 1.Departments of Ophthalmology and PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of OphthalmologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations