Lab-on-a-Chip-Based Point-of-Care Immunoassays

  • Sandeep Kumar Vashist


Lab-on-a-chip (LOC)-based immunoassays (IAs) are one of the most prospective IA formats for the point-of-care (POC) detection of analytes at the point-of-need as they are simple, cost-effective, and rapid. Although the conventional POC IA formats are lateral flow assay (LFA), dipstick, and electrochemical strips, the most recent LOC-based POC IA platforms incorporate microfluidic (MF) chips, paper, cellphone (CP), electrochemistry, lateral flow, and new biosensor concepts. There is an extensive need for such LOC-based POC IAs for the low-cost diagnosis of diseases in the developing countries and remote settings. They don’t require skilled analysts, expensive instruments, and costly infrastructure. The current trend is strongly inclined toward the use of smartphones (SPs) as the POC readers or smart readers. The next-generation LOC-based POC IAs would be fully-automated, low-cost, and simple to operate. They will employ novel IA concepts, strategies for prolonged reagent storage, innovative biosensors, and high-throughput multiplex detection. This chapter discussed the various LOC-based POC IAs along with the future trends and challenges toward the development of clinically-viable immunodiagnostics.


Lab-on-a-chip Immunoassays Point-of-care testing Smart readers 


  1. 1.
    Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30(6):887–98.CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRefGoogle Scholar
  5. 5.
    Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12(12):2118–34.CrossRefGoogle Scholar
  6. 6.
    Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Kai J, Puntambekar A, Santiago N, Lee SH, Sehy DW, Moore V, et al. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab Chip. 2012;12(21):4257–62.CrossRefGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
    Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–73.CrossRefGoogle Scholar
  12. 12.
    Czilwik G, Vashist SK, Klein V, Buderer A, Roth G, von Stetten F, et al. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv. 2015;5(76):61906–12.CrossRefGoogle Scholar
  13. 13.
    Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.CrossRefGoogle Scholar
  14. 14.
    Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. Lab Chip. 2013;13(21):4231–8.CrossRefGoogle Scholar
  15. 15.
    Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.CrossRefGoogle Scholar
  16. 16.
    Su K, Zou Q, Zhou J, Zou L, Li H, Wang T, et al. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sens Actuators B Chem. 2015;216:134–40.CrossRefGoogle Scholar
  17. 17.
    Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.CrossRefGoogle Scholar
  18. 18.
    Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.CrossRefGoogle Scholar
  19. 19.
    Long KD, Yu H, Cunningham BT. Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomed Opt Exp. 2014;5(11):3792–806.CrossRefGoogle Scholar
  20. 20.
    Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–8.CrossRefGoogle Scholar
  21. 21.
    Venkatesh AG, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT, et al. A smartphone-based colorimetric reader for human C-reactive protein immunoassay. Methods Mol Biol. 2017;1571:343–56.CrossRefGoogle Scholar
  22. 22.
    Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.CrossRefGoogle Scholar
  23. 23.
    Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D. A smartphone platform for the quantification of vitamin D levels. Lab Chip. 2014;14(8):1437–42.CrossRefGoogle Scholar
  24. 24.
    Oncescu V, Mancuso M, Erickson D. Cholesterol testing on a smartphone. Lab Chip. 2014;14(4):759–63.CrossRefGoogle Scholar
  25. 25.
    Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.CrossRefGoogle Scholar
  26. 26.
    Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.CrossRefGoogle Scholar
  27. 27.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRefGoogle Scholar
  28. 28.
    Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.CrossRefGoogle Scholar
  29. 29.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Liu W, Cassano CL, Xu X, Fan ZH. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal Chem. 2013;85(21):10270–6.CrossRefGoogle Scholar
  32. 32.
    You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.CrossRefGoogle Scholar
  33. 33.
    Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.CrossRefGoogle Scholar
  34. 34.
    Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed Engl. 2012;51(46):11585–8.CrossRefGoogle Scholar
  35. 35.
    Santhiago M, Wydallis JB, Kubota LT, Henry CS. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal Chem. 2013;85(10):5233–9.CrossRefGoogle Scholar
  36. 36.
    Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.CrossRefGoogle Scholar
  37. 37.
    Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.CrossRefGoogle Scholar
  38. 38.
    Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.CrossRefGoogle Scholar
  39. 39.
    Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.CrossRefGoogle Scholar
  40. 40.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.CrossRefGoogle Scholar
  41. 41.
    Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.CrossRefGoogle Scholar
  42. 42.
    Fernandez-Sanchez C, McNeil CJ, Rawson K, Nilsson O, Leung HY, Gnanapragasam V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J Immunol Methods. 2005;307(1–2):1–12.CrossRefGoogle Scholar
  43. 43.
    Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRefGoogle Scholar
  44. 44.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.CrossRefGoogle Scholar
  45. 45.
    Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.CrossRefGoogle Scholar
  46. 46.
    Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.CrossRefGoogle Scholar
  47. 47.
    van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.CrossRefGoogle Scholar
  48. 48.
    Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.CrossRefGoogle Scholar
  49. 49.
    Lewis GG, DiTucci MJ, Baker MS, Phillips ST. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip. 2012;12(15):2630–3.CrossRefGoogle Scholar
  50. 50.
    Schilling KM, Jauregui D, Martinez AW. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip. 2013;13(4):628–31.CrossRefGoogle Scholar
  51. 51.
    Cassano CL, Fan ZH. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid Nanofluidics. 2013;15(2):173–81.CrossRefGoogle Scholar
  52. 52.
    Liu H, Crooks RM. Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc. 2011;133(44):17564–6.CrossRefGoogle Scholar
  53. 53.
    Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed. 2010;49(28):4771–4.CrossRefGoogle Scholar
  54. 54.
    Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.CrossRefGoogle Scholar
  55. 55.
    Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.CrossRefGoogle Scholar
  56. 56.
    Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.CrossRefGoogle Scholar
  57. 57.
    Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.CrossRefGoogle Scholar
  58. 58.
    Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.CrossRefGoogle Scholar
  59. 59.
    Choi DH, Lee SK, Oh YK, Bae BW, Lee SD, Kim S, et al. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron. 2010;25(8):1999–2002.CrossRefGoogle Scholar
  60. 60.
    Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed. 2012;124(18):4434–7.CrossRefGoogle Scholar
  61. 61.
    Parolo C, Medina-Sanchez M, de la Escosura-Muniz A, Merkoci A. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip. 2013;13(3):386–90.CrossRefGoogle Scholar
  62. 62.
    Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.CrossRefGoogle Scholar
  63. 63.
    Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.CrossRefGoogle Scholar
  64. 64.
    Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.CrossRefGoogle Scholar
  65. 65.
  66. 66.
    Beaudet L, Rodriguez-Suarez R, Venne M-H, Caron M, Bédard J, Brechler V, et al. AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat Methods. 2008;5(12):A10–1.CrossRefGoogle Scholar
  67. 67.
    Hawa G, Sonnleitner L, Missbichler A, Prinz A, Bauer G, Mauracher CJAB. Single step, direct fluorescence immunoassays based on metal enhanced fluorescence (MEF-FIA) applicable as micro plate-, array-, multiplexing-or point of care-format. Anal Biochem. 2018;549:39–44.CrossRefGoogle Scholar
  68. 68.
    Vashist SK, Czilwik G, Alagarswamy GV. Elisa system and related methods. WIPO Patent Pub No WO/2014/198836.Google Scholar
  69. 69.
    Vashist SK, Czilwik G, van Oordt T, von Stetten F, Zengerle R, Marion Schneider E, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30min. Anal Biochem. 2014;456:32–7.CrossRefGoogle Scholar
  70. 70.
    Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66(0):169–76.CrossRefGoogle Scholar
  71. 71.
    Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev. 2014;114(21):11083–130.CrossRefGoogle Scholar
  72. 72.
    Jahanshahi-Anbuhi S, Pennings K, Leung V, Liu M, Carrasquilla C, Kannan B, et al. Pullulan encapsulation of labile biomolecules to give stable bioassay tablets. Angew Chem Int Ed. 2014;53(24):6155–8.CrossRefGoogle Scholar
  73. 73.
    Ramachandran S, Fu E, Lutz B, Yager P. Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst. 2014;139(6):1456–62.CrossRefGoogle Scholar
  74. 74.
    Guidance for industry – Bioanalytical method validation. (2001).
  75. 75.
  76. 76.
    Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRefGoogle Scholar
  77. 77.
    Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.CrossRefGoogle Scholar
  78. 78.
    Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  1. 1.Labsystems Diagnostics OyVantaaFinland

Personalised recommendations