Paper-Based Point-of-Care Immunoassays

  • Sandeep Kumar Vashist


Paper-based point-of-care (POC) immunoassays (IA) enable the detection of analytes at the remote, decentralized, and personalized settings. Based on their low-cost, simplicity, and rapid analyte detection, they are ideal for POC diagnostic applications in developing countries, which have limited healthcare resources, personnel, and infrastructure. They obviate the limitations of conventional immunodiagnostic assays and the upcoming automated immunoassays, such as the need for highly-skilled analysts, costly infrastructure, bulky and expensive instruments, continuous power supply, and complex process steps. The emerging trend is toward the development of fully-integrated paper-based IAs (PIAs) that can be read by smartphones (SP) or smart readers. This chapter discusses the various PIAs that have been developed to date together with the future trends and challenges.


Paper Immunoassays Point-of-care diagnosis Smart readers 


  1. 1.
    Vashist SK, Luong JHT. Handbook of immunoassay technologies: approaches, performances, and applications. London: Academic Press; 2018.Google Scholar
  2. 2.
    Ahmed S, Bui MP, Abbas A. Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron. 2016;77:249–63.CrossRefGoogle Scholar
  3. 3.
    Chen Y-H, Kuo Z-K, Cheng C-M. Paper–a potential platform in pharmaceutical development. Trends Biotech. 2015;33(1):4–9.CrossRefGoogle Scholar
  4. 4.
    Ge L, Yu J, Ge S, Yan M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem. 2014;406(23):5613–30.CrossRefGoogle Scholar
  5. 5.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.CrossRefGoogle Scholar
  6. 6.
    Liana DD, Raguse B, Gooding JJ, Chow E. Recent advances in paper-based sensors. Sensors. 2012;12(9):11505–26.CrossRefGoogle Scholar
  7. 7.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.CrossRefGoogle Scholar
  8. 8.
    Parolo C, Merkoci A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42(2):450–7.CrossRefGoogle Scholar
  9. 9.
    Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.CrossRefGoogle Scholar
  10. 10.
    Rolland JP, Mourey DA. Paper as a novel material platform for devices. MRS Bull. 2013;38(04):299–305.CrossRefGoogle Scholar
  11. 11.
    Then WL, Garnier G. Paper diagnostics in biomedicine. Rev Anal Chem. 2013;32(4):269–94.CrossRefGoogle Scholar
  12. 12.
    Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.CrossRefGoogle Scholar
  13. 13.
    Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B. Modeling liquid porosimetry in modeled and imaged 3-D fibrous microstructures. J Colloid Interface Sci. 2008;326(1):166–75.CrossRefGoogle Scholar
  14. 14.
    Pan N. On uniqueness of fibrous materials. WIT Trans Ecol Environ. 2004;73:10. Scholar
  15. 15.
    Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–51.CrossRefGoogle Scholar
  16. 16.
    Wong R, Tse H. Lateral flow immunoassay. New York: Humana Press; 2009.CrossRefGoogle Scholar
  17. 17.
    Han YL, Wang W, Hu J, Huang G, Wang S, Lee WG, et al. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite. Lab Chip. 2013;13(24):4745–9.CrossRefGoogle Scholar
  18. 18.
    Park S, Mohanty N, Suk JW, Nagaraja A, An J, Piner RD, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater. 2010;22(15):1736–40.CrossRefGoogle Scholar
  19. 19.
    Nanomaterials SB. Paper powers battery breakthrough. Nat Nanotechnol. 2007;2(10):598–9.CrossRefGoogle Scholar
  20. 20.
    Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3(7):1745–52.CrossRefGoogle Scholar
  21. 21.
    Chen X, Chen J, Wang F, Xiang X, Luo M, Ji X, et al. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron. 2012;35(1):363–8.CrossRefGoogle Scholar
  22. 22.
    He M, Liu Z. Paper-based microfluidic device with upconversion fluorescence assay. Anal Chem. 2013;85(24):11691–4.CrossRefGoogle Scholar
  23. 23.
    Lei KF, Yang S-I, Tsai S-W, Hsu H-T. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin–avidin binding interaction. Talanta. 2015;134:264–70.CrossRefGoogle Scholar
  24. 24.
    Li X, Tian J, Shen W. Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem. 2010;396(1):495–501.CrossRefGoogle Scholar
  25. 25.
    Liu F, Zhang C. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens Actuators B Chem. 2015;209:399–406.CrossRefGoogle Scholar
  26. 26.
    Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.CrossRefGoogle Scholar
  27. 27.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW 3rd, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–707.CrossRefGoogle Scholar
  28. 28.
    Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A. 2008;105(50):19606–11.CrossRefGoogle Scholar
  29. 29.
    Mu X, Zhang L, Chang S, Cui W, Zheng Z. Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem. 2014;86(11):5338–44.CrossRefGoogle Scholar
  30. 30.
    Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta. 2013;788:39–45.CrossRefGoogle Scholar
  31. 31.
    Rattanarat P, Dungchai W, Cate DM, Siangproh W, Volckens J, Chailapakul O, et al. A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Anal Chim Acta. 2013;800:50–5.CrossRefGoogle Scholar
  32. 32.
    Schilling KM, Lepore AL, Kurian JA, Martinez AW. Fully enclosed microfluidic paper-based analytical devices. Anal Chem. 2012;84(3):1579–85.CrossRefGoogle Scholar
  33. 33.
    Wu Y, Xue P, Hui KM, Kang Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2014;52:180–7.CrossRefGoogle Scholar
  34. 34.
    Yu J, Wang S, Ge L, Ge S. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron. 2011;26(7):3284–9.CrossRefGoogle Scholar
  35. 35.
    Zhao C, Thuo MM, Liu X. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci Technol Adv Mater. 2013;14(5):054402.CrossRefGoogle Scholar
  36. 36.
    Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.CrossRefGoogle Scholar
  37. 37.
    Fu E, Ramsey SA, Kauffman P, Lutz B, Yager P. Transport in two-dimensional paper networks. Microfluid Nanofluidics. 2011;10(1):29–35.CrossRefGoogle Scholar
  38. 38.
    Song MB, Joung HA, Oh YK, Jung K, Ahn YD, Kim MG. Tear-off patterning: a simple method for patterning nitrocellulose membranes to improve the performance of point-of-care diagnostic biosensors. Lab Chip. 2015;15(14):3006–12.CrossRefGoogle Scholar
  39. 39.
    Noh H, Phillips ST. Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem. 2010;82(19):8071–8.CrossRefGoogle Scholar
  40. 40.
    Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5.CrossRefGoogle Scholar
  41. 41.
    Zhong Z, Wang Z, Huang G. Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsyst Technol. 2012;18(5):649–59.CrossRefGoogle Scholar
  42. 42.
    Lu Y, Shi W, Qin J, Lin B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem. 2009;82(1):329–35.CrossRefGoogle Scholar
  43. 43.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–20.CrossRefGoogle Scholar
  44. 44.
    Free AH, Adams EC, Kercher ML, Free HM, Cook MH. Simple specific test for urine glucose. Clin Chem. 1957;3(3):163–8.Google Scholar
  45. 45.
    Glad C, Grubb AO. Immunocapillary migration—a new method for immunochemical quantitation. Anal Biochem. 1978;85(1):180–7.CrossRefGoogle Scholar
  46. 46.
    Vaitukaitis JL, Braunstein GD, Ross GT. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol. 1972;113(6):751–8.CrossRefGoogle Scholar
  47. 47.
    Hawkes R, Niday E, Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982;119(1):142–7.CrossRefGoogle Scholar
  48. 48.
    Le S, Zhou H, Nie J, Cao C, Yang J, Pan H, et al. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout. Analyst. 2017;142(3):511–6.CrossRefGoogle Scholar
  49. 49.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRefGoogle Scholar
  50. 50.
    Young RO, Young SR. The pH miracle: balance your diet, reclaim your health. New York: Hachette UK; 2008.Google Scholar
  51. 51.
    Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed Engl. 2010;49(28):4771–4.CrossRefGoogle Scholar
  52. 52.
    Tian J, Li X, Shen W. Printed two-dimensional micro-zone plates for chemical analysis and ELISA. Lab Chip. 2011;11(17):2869–75.CrossRefGoogle Scholar
  53. 53.
    Avrameas S, Ternynck T. Enzyme-linked immunosorbent assay (ELISA). 1998.Google Scholar
  54. 54.
    O’Connor EF, Paterson S, De La Rica R. Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal Bioanal Chem. 2016;408(13):3389–93.CrossRefGoogle Scholar
  55. 55.
    Bahadır EB, Sezgintürk MK. Lateral flow assays: principles, designs and labels. Trends Anal Chem. 2016;82:286–306.CrossRefGoogle Scholar
  56. 56.
    Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.CrossRefGoogle Scholar
  57. 57.
    Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.CrossRefGoogle Scholar
  58. 58.
    Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv. 2012;30(6):1551–61.CrossRefGoogle Scholar
  59. 59.
    Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRefGoogle Scholar
  60. 60.
    Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–83.CrossRefGoogle Scholar
  61. 61.
    Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.CrossRefGoogle Scholar
  62. 62.
    Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.CrossRefGoogle Scholar
  63. 63.
    van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.CrossRefGoogle Scholar
  64. 64.
    Sajid M, Kawde A-N, Daud M. Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc. 2015;19(6):689–705.CrossRefGoogle Scholar
  65. 65.
    Liu W, Cassano CL, Xu X, Fan ZH. Laminated paper-based analytical devices (LPAD) with origami-enabled chemiluminescence immunoassay for cotinine detection in mouse serum. Anal Chem. 2013;85(21):10270–6.CrossRefGoogle Scholar
  66. 66.
    Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.CrossRefGoogle Scholar
  67. 67.
    Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.CrossRefGoogle Scholar
  68. 68.
    Cassano CL, Fan ZH. Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluidic Nanofluidics. 2013;15(2):173–81.CrossRefGoogle Scholar
  69. 69.
    Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.CrossRefGoogle Scholar
  70. 70.
    Lewis GG, DiTucci MJ, Baker MS, Phillips ST. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip. 2012;12(15):2630–3.CrossRefGoogle Scholar
  71. 71.
    Schilling KM, Jauregui D, Martinez AW. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Lab Chip. 2013;13(4):628–31.CrossRefGoogle Scholar
  72. 72.
    Liu H, Crooks RM. Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc. 2011;133(44):17564–6.CrossRefGoogle Scholar
  73. 73.
    Liu X, Cheng C, Martinez A, Mirica K, Li X, Phillips S, et al., editors. A portable microfluidic paper-based device for ELISA. Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. IEEE; 2011.Google Scholar
  74. 74.
    Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.CrossRefGoogle Scholar
  75. 75.
    Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.CrossRefGoogle Scholar
  76. 76.
    Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.CrossRefGoogle Scholar
  77. 77.
    Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–80.CrossRefGoogle Scholar
  78. 78.
    Rivasa L, Medina-Sáncheza M, de la Escosura-Muñiza A, Merkoçi A. Improving sensitivity of gold nanoparticles-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip. 2014;14:4406–14.CrossRefGoogle Scholar
  79. 79.
    Posthuma-Trumpie GA, Wichers JH, Koets M, Berendsen LB, van Amerongen A. Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Anal Bioanal Chem. 2012;402(2):593–600.CrossRefGoogle Scholar
  80. 80.
    Wang D-B, Tian B, Zhang Z-P, Deng J-Y, Cui Z-Q, Yang R-F, et al. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detectionsystem. Biosens Bioelectron. 2013;42:661–7.CrossRefGoogle Scholar
  81. 81.
    Wang S, Ge L, Song X, Yu J, Ge S, Huang J, et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron. 2012;31(1):212–8.CrossRefGoogle Scholar
  82. 82.
    Li X, Zwanenburg P, Liu X. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip. 2013;13(13):2609–14.CrossRefGoogle Scholar
  83. 83.
    Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115(19):10575–636.CrossRefGoogle Scholar
  84. 84.
    Quesada-Gonzalez D, Merkoci A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63.CrossRefGoogle Scholar
  85. 85.
    Safenkova I, Zherdev A, Dzantiev B. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem. 2012;403(6):1595–605.CrossRefGoogle Scholar
  86. 86.
    Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.CrossRefGoogle Scholar
  87. 87.
    Shen G, Zhang S, Hu X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin Biochem. 2013;46(16–17):1734–8.CrossRefGoogle Scholar
  88. 88.
    Xu H, Chen J, Birrenkott J, Zhao JX, Takalkar S, Baryeh K, et al. Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins. Anal Chem. 2014;86(15):7351–9.CrossRefGoogle Scholar
  89. 89.
    Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, et al. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron. 2009;25(2):514–8.CrossRefGoogle Scholar
  90. 90.
    Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, et al. Rough surface Au@ Ag core–shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotech. 2015;13(1):81.CrossRefGoogle Scholar
  91. 91.
    Blažková M, Rauch P, Fukal L. Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron. 2010;25(9):2122–8.CrossRefGoogle Scholar
  92. 92.
    Linares EM, Kubota LT, Michaelis J, Thalhammer S. Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J Immunol Methods. 2012;375(1–2):264–70.CrossRefGoogle Scholar
  93. 93.
    Suarez-Pantaleon C, Wichers J, Abad-Somovilla A, van Amerongen A, Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens Bioelectron. 2013;42:170–6.CrossRefGoogle Scholar
  94. 94.
    Huang Y-M, Dao-Feng L, Wei-Hua L, Xiong Y-H, Wan-Chun Y, Kun L, et al. Rapid detection of aflatoxin M1 by immunochromatography combined with enrichment based on immunomagnetic nanobead. Chin J Anal Chem. 2014;42(5):654–9.CrossRefGoogle Scholar
  95. 95.
    Wang Y, Xu H, Wei M, Gu H, Xu Q, Zhu W. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater Sci Eng C. 2009;29(3):714–8.CrossRefGoogle Scholar
  96. 96.
    Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L, et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem. 2011;83(17):6778–84.CrossRefGoogle Scholar
  97. 97.
    Yan J, Liu Y, Wang Y, Xu X, Lu Y, Pan Y, et al. Effect of physiochemical property of Fe3O4 particle on magnetic lateral flow immunochromatographic assay. Sens Actuators B Chem. 2014;197:129–36.CrossRefGoogle Scholar
  98. 98.
    Tang Y, Li Z, He N, Zhang L, Ma C, Li X, et al. Preparation of functional magnetic nanoparticles mediated with PEG-4000 and application in Pseudomonas aeruginosa rapid detection. J Biomed Nanotechnol. 2013;9(2):312–7.CrossRefGoogle Scholar
  99. 99.
    Xu X, Deng C, Gao M, Yu W, Yang P, Zhang X. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater. 2006;18(24):3289–93.CrossRefGoogle Scholar
  100. 100.
    Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed. 2012;51(18):4358–61.CrossRefGoogle Scholar
  101. 101.
    Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, Gonzalez IJ, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Anal Chem. 2016;88(23):11774–82.CrossRefGoogle Scholar
  102. 102.
    Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotech. 2010;5(4):251.CrossRefGoogle Scholar
  103. 103.
    Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2(1):30–8.CrossRefGoogle Scholar
  104. 104.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87(1):19–41.CrossRefGoogle Scholar
  105. 105.
    Luo S, Xiao H, Yang S, Liu C, Liang J, Tang Y. Ultrasensitive detection of pentachlorophenol based on enhanced electrochemiluminescence of Au nanoclusters/graphene hybrids. Sens Actuators B Chem. 2014;194:325–31.CrossRefGoogle Scholar
  106. 106.
    Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E. Paper based solid-state electrochemiluminescence sensor using poly (sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Anal Chim Acta. 2013;763:20–7.CrossRefGoogle Scholar
  107. 107.
    Li Z, Liu H, Ouyang C, Hong Wee W, Cui X, Jian Lu T, et al. Recent advances in pen-based writing electronics and their emerging applications. Adv Funct Mater. 2016;26(2):165–80.CrossRefGoogle Scholar
  108. 108.
    Li Z, Li F, Hu J, Wee WH, Han YL, Pingguan-Murphy B, et al. Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst. 2015;140(16):5526–35.CrossRefGoogle Scholar
  109. 109.
    Siegel AC, Phillips ST, Wiley BJ, Whitesides GM. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip. 2009;9(19):2775–81.CrossRefGoogle Scholar
  110. 110.
    Matsuda Y, Shibayama S, Uete K, Yamaguchi H, Niimi T. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices. Anal Chem. 2015;87(11):5762–5.CrossRefGoogle Scholar
  111. 111.
    Li Z, Hu J, Xu F, Li F. Recent developments of three-dimensional paper-based electrochemical devices for cancer cell detection and anticancer drug screening. Curr Pharm Biotechnol. 2016;17(9):802–9.CrossRefGoogle Scholar
  112. 112.
    Wang P, Ge L, Yan M, Song X, Ge S, Yu J. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens Bioelectron. 2012;32(1):238–43.CrossRefGoogle Scholar
  113. 113.
    Ge L, Yan J, Song X, Yan M, Ge S, Yu J. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials. 2012;33(4):1024–31.CrossRefGoogle Scholar
  114. 114.
    Li W, Li L, Li M, Yu J, Ge S, Yan M, et al. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan. Chem Commun. 2013;49(83):9540–2.CrossRefGoogle Scholar
  115. 115.
    Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, et al. 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron. 2015;63:7–13.CrossRefGoogle Scholar
  116. 116.
    Wang DB, Tian B, Zhang ZP, Wang XY, Fleming J, Bi LJ, et al. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “Road Closure”. Biosens Bioelectron. 2015;67:608–14.CrossRefGoogle Scholar
  117. 117.
    Ge L, Wang S, Song X, Ge S, Yu J. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip. 2012;12(17):3150–8.CrossRefGoogle Scholar
  118. 118.
    Li W, Ge S, Wang S, Yan M, Ge L, Yu J. Highly sensitive chemiluminescence immunoassay on chitosan membrane modified paper platform using TiO2 nanoparticles/multiwalled carbon nanotubes as label. Luminescence. 2013;28(4):496–502.CrossRefGoogle Scholar
  119. 119.
    Wang S, Ge L, Song X, Yan M, Ge S, Yu J, et al. Simple and covalent fabrication of a paper device and its application in sensitive chemiluminescence immunoassay. Analyst. 2012;137(16):3821–7.CrossRefGoogle Scholar
  120. 120.
    Li L, Li W, Ma C, Yang H, Ge S, Yu J. Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene quantum dots functionalized Au@Pt. Sens Actuators B Chem. 2014;202:314–22.CrossRefGoogle Scholar
  121. 121.
    Li W, Li M, Ge S, Yan M, Huang J, Yu J. Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy. Anal Chim Acta. 2013;767:66–74.CrossRefGoogle Scholar
  122. 122.
    Yan J, Ge L, Song X, Yan M, Ge S, Yu J. Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem Eur J. 2012;18(16):4938–45.CrossRefGoogle Scholar
  123. 123.
    Parolo C, Medina-Sanchez M, de la Escosura-Muniz A, Merkoci A. Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip. 2013;13(3):386–90.CrossRefGoogle Scholar
  124. 124.
    Shan S, Lai W, Xiong Y, Wei H, Xu H. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem. 2015;63(3):745–53.CrossRefGoogle Scholar
  125. 125.
    Qian S, Bau HH. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem. 2003;322(1):89–98.CrossRefGoogle Scholar
  126. 126.
    Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E. Tunable-delay shunts for paper microfluidic devices. Anal Chem. 2013;85(23):11545–52.CrossRefGoogle Scholar
  127. 127.
    Liu Z, Hu J, Zhao Y, Qu Z, Xu F. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl Therm Eng. 2015;88:280–7.CrossRefGoogle Scholar
  128. 128.
    Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip. 2013;13(14):2840–7.CrossRefGoogle Scholar
  129. 129.
    Whitesides GM. Viewpoint on “Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics”. Lab Chip. 2013;13(20):4004–5.CrossRefGoogle Scholar
  130. 130.
    Li C, Boban M, Snyder SA, Kobaku SP, Kwon G, Mehta G, et al. Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Funct Mater. 2016;26(33):6121–31.CrossRefGoogle Scholar
  131. 131.
    Sun Y, Kharaghani A, Tsotsas E. Micro-model experiments and pore network simulations of liquid imbibition in porous media. Chem Eng Sci. 2016;150:41–53.CrossRefGoogle Scholar
  132. 132.
    Jahanshahi-Anbuhi S, Henry A, Leung V, Sicard C, Pennings K, Pelton R, et al. Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip. 2014;14(1):229–36.CrossRefGoogle Scholar
  133. 133.
    Jahanshahi-Anbuhi S, Chavan P, Sicard C, Leung V, Hossain SM, Pelton R, et al. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip. 2012;12(23):5079–85.CrossRefGoogle Scholar
  134. 134.
    Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q, et al. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta. 2014;181(13–14):1565–72.CrossRefGoogle Scholar
  135. 135.
    Lee J-H, Seo HS, Kwon J-H, Kim H-T, Kwon KC, Sim SJ, et al. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles. Biosens Bioelectron. 2015;69:213–25.CrossRefGoogle Scholar
  136. 136.
    Zhang D, Li P, Liu W, Zhao L, Zhang Q, Zhang W, et al. Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes. Sens Actuators B Chem. 2013;185:432–7.CrossRefGoogle Scholar
  137. 137.
    Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, et al. A naked-eye based strategy for semiquantitative immunochromatographic assay. Anal Chim Acta. 2012;740:74–9.CrossRefGoogle Scholar
  138. 138.
    Fang Q, Wang L, Cheng Q, Cai J, Wang Y, Yang M, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta. 2015;881:82–9.CrossRefGoogle Scholar
  139. 139.
    Oh YK, Joung HA, Han HS, Suk HJ, Kim MG. A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera. Biosens Bioelectron. 2014;61:285–9.CrossRefGoogle Scholar
  140. 140.
    Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.CrossRefGoogle Scholar
  141. 141.
    Li B, Li L, Guan A, Dong Q, Ruan K, Hu R, et al. A smartphone controlled handheld microfluidic liquid handling system. Lab Chip. 2014;14(20):4085–92.CrossRefGoogle Scholar
  142. 142.
    Vatsyayan P. Recent advances in the study of electrochemistry of redox proteins, Trends in Bioelectroanalysis bioanalytical reviews, vol. 6. Cham: Springer; 2016. p. 223–62.Google Scholar
  143. 143.
    Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 2016;75:273–84.CrossRefGoogle Scholar
  144. 144.
    Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRefGoogle Scholar
  145. 145.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRefGoogle Scholar
  146. 146.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRefGoogle Scholar
  147. 147.
    Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.CrossRefGoogle Scholar
  148. 148.
    Thom NK, Yeung K, Pillion MB, Phillips ST. “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip. 2012;12(10):1768–70.CrossRefGoogle Scholar
  149. 149.
    Thom NK, Lewis GG, DiTucci MJ, Phillips ST. Two general designs for fluidic batteries in paper-based microfluidic devices that provide predictable and tunable sources of power for on-chip assays. RSC Adv. 2013;3(19):6888–95.CrossRefGoogle Scholar
  150. 150.
    Liu H, Crooks RM. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem. 2012;84(5):2528–32.CrossRefGoogle Scholar
  151. 151.
    Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.CrossRefGoogle Scholar
  152. 152.
    Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.CrossRefGoogle Scholar
  153. 153.
    Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.CrossRefGoogle Scholar
  154. 154.
    Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRefGoogle Scholar
  155. 155.
    Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.CrossRefGoogle Scholar
  156. 156.
    Vashist SK, Venkatesh AG, Mitsakakis K, Czilwik G, Roth G, von Stetten F, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. BioNanoSci. 2012;2(3):115–26.CrossRefGoogle Scholar
  157. 157.
    Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  1. 1.Labsystems Diagnostics OyVantaaFinland

Personalised recommendations