Smartphone-Based Point-of-Care Technologies for Mobile Healthcare

  • Sandeep Kumar Vashist
  • John H. T. Luong


Smartphone (SP)-based devices and associated tools have emerged as ideal next-generation point-of-care devices (POCD) for in vitro diagnostics (IVD) of important physiological parameters including blood glucose level. Such devices with advanced features are anticipated to play an enhanced role in the future of cost-effective mobile healthcare (mH) and personalized medicine. The detection principle of the diversified SP-IVD devices encompasses optical, surface plasmon resonance, lateral flow, or electrochemical methods. Another appealing approach is the transformation of SP into a compact and inexpensive microscope or cytometer to detect biomolecules, metabolites, biomarkers, and pathogens. The exponential development of SP-IVD technologies will foster their widespread use in personalized mH in remote settings and, particularly, in developing countries with limited healthcare resources. The extent of private health data created by SP-IVD will herald the enlargement of Cloud-based technologies to securely transmit, store, and retrieve such confidential data across medical fraternity and policymakers.


Smartphone In vitro diagnostics Mobile healthcare 


  1. 1.
    Measuring the information Society Report. 2017.
  2. 2.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRefGoogle Scholar
  3. 3.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRefGoogle Scholar
  4. 4.
    Vashist SK, Luong JHT. Smartphone-based immunoassays. Handbook of immunoassay technologies. Elsevier; 2018. p. 433–53. ISBN: 9780128117620.Google Scholar
  5. 5.
    Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.CrossRefGoogle Scholar
  6. 6.
    Erickson D, O’Dell D, Jiang L, Oncescu V, Gumus A, Lee S, et al. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip. 2014;14(17):3159–64.CrossRefGoogle Scholar
  7. 7.
    You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.CrossRefGoogle Scholar
  8. 8.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRefGoogle Scholar
  9. 9.
    Cooper DC, Callahan B, Callahan P, Burnett L. Mobile image ratiometry: a new method for instantaneous analysis of rapid test strips. Nat Preced. 2012;
  10. 10.
    Cadle BA, Rasmus KC, Varela JA, Leverich LS, O’Neill CE, Bachtell RK, et al. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications. Subst Abus. 2010;4:21–33.Google Scholar
  11. 11.
    Cooper DC. Mobile image ratiometry for the detection of Botrytis cinerea (Gray Mold). Nat Preced. 2012;
  12. 12.
    Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip. 2010;10(11):1417–28.CrossRefGoogle Scholar
  13. 13.
    Bishara W, Sikora U, Mudanyali O, Su TW, Yaglidere O, Luckhart S, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip. 2011;11(7):1276–9.CrossRefGoogle Scholar
  14. 14.
    Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13(7):1282–8.CrossRefGoogle Scholar
  15. 15.
    Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.CrossRefGoogle Scholar
  16. 16.
    Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRefGoogle Scholar
  17. 17.
    Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.CrossRefGoogle Scholar
  18. 18.
    Oberding JW, Geiger GE, White KD, Ward RN. Blood glucose meter/modem interface arrangement. U.S. Patent Application No. 7,181,350.B2.2007.Google Scholar
  19. 19.
    Peeters JP. Diagnostic radio frequency identification sensors and applications thereof. U.S. Patent No. 8,077,042.Google Scholar
  20. 20.
    Wang X, Gartia MR, Jiang J, Chang T-W, Qian J, Liu Y, et al. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem. 2014;209:677–85.CrossRefGoogle Scholar
  21. 21.
    Lu Y, Shi W, Qin J, Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30(4):579–82.CrossRefGoogle Scholar
  22. 22.
    Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.CrossRefGoogle Scholar
  23. 23.
    Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.CrossRefGoogle Scholar
  24. 24.
    McGeough CM, O’Driscoll S. Camera phone-based quantitative analysis of C-reactive protein ELISA. IEEE Trans Biomed Circuits Syst. 2013;7(5):655–9.CrossRefGoogle Scholar
  25. 25.
    Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem. 2012;51(46):11585–8.CrossRefGoogle Scholar
  26. 26.
    Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep. 2014;4:6789.CrossRefGoogle Scholar
  27. 27.
    Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.CrossRefGoogle Scholar
  28. 28.
    Shen L, Hagen JA, Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12(21):4240–3.CrossRefGoogle Scholar
  29. 29.
    Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66:169–76.CrossRefGoogle Scholar
  30. 30.
    Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.CrossRefGoogle Scholar
  31. 31.
    Oncescu V, Mancuso M, Erickson D. Cholesterol testing on a smartphone. Lab Chip. 2014;14(4):759–63.CrossRefGoogle Scholar
  32. 32.
    Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRefGoogle Scholar
  33. 33.
    Vashist SK, Luong JHT. Trends in in vitro diagnostics and mobile healthcare. Biotechnol Adv. 2016;34(3):137–8.CrossRefGoogle Scholar
  34. 34.
    Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.CrossRefGoogle Scholar
  35. 35.
    Venkatesh AG, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT, et al. A smartphone-based colorimetric reader for human C-reactive protein immunoassay. Methods Mol Biol. 2017;1571:343–56.CrossRefGoogle Scholar
  36. 36.
    Park TS, Li W, McCracken KE, Yoon JY. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13(24):4832–40.CrossRefGoogle Scholar
  37. 37.
    Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–8.CrossRefGoogle Scholar
  38. 38.
    Lee S, Kim G, Moon J. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. Sensors. 2013;13(4):5109–16.CrossRefGoogle Scholar
  39. 39.
    Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, et al. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360–9.CrossRefGoogle Scholar
  40. 40.
    Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, Wei Q, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9(8):7857–66.CrossRefGoogle Scholar
  41. 41.
    Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D. A smartphone platform for the quantification of vitamin D levels. Lab Chip. 2014;14(8):1437–42.CrossRefGoogle Scholar
  42. 42.
    Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.CrossRefGoogle Scholar
  43. 43.
    Smith JE, Griffin DK, Leny JK, Hagen JA, Chavez JL, Kelley-Loughnane N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta. 2014;121:247–55.CrossRefGoogle Scholar
  44. 44.
    El Kaoutit H, Estévez P, García FC, Serna F, García JM. Sub-ppm quantification of Hg(II) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone. Anal Methods. 2013;5(1):54–8.CrossRefGoogle Scholar
  45. 45.
    Xiao W, Xiao M, Fu Q, Yu S, Shen H, Bian H, et al. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors. 2016;16(11):1871.CrossRefGoogle Scholar
  46. 46.
    Sumriddetchkajorn S, Chaitavon K, Intaravanne Y. Mobile-platform based colorimeter for monitoring chlorine concentration in water. Sensors Actuators B Chem. 2014;191:561–6.CrossRefGoogle Scholar
  47. 47.
    Sumriddetchkajorn S, Chaitavon K, Intaravanne Y. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sensors Actuators B Chem. 2013;182:592–7.CrossRefGoogle Scholar
  48. 48.
    Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.CrossRefGoogle Scholar
  49. 49.
    Salles MO, Meloni GN, de Araujo WR, Paixão TRLC. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal Methods. 2014;6(7):2047–52.CrossRefGoogle Scholar
  50. 50.
    Oncescu V, O’Dell D, Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip. 2013;13(16):3232–8.CrossRefGoogle Scholar
  51. 51.
    Hong JI, Chang BY. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip. 2014;14(10):1725–32.CrossRefGoogle Scholar
  52. 52.
    Mancuso M, Cesarman E, Erickson D. Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip. 2014;14(19):3809–16.CrossRefGoogle Scholar
  53. 53.
    Mancuso M, Jiang L, Cesarman E, Erickson D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale. 2013;5(4):1678–86.CrossRefGoogle Scholar
  54. 54.
    García A, Erenas M, Marinetto ED, Abad CA, de Orbe-Paya I, Palma AJ, et al. Mobile phone platform as portable chemical analyzer. Sensors Actuators B: Chemical. 2011;156(1):350–9.CrossRefGoogle Scholar
  55. 55.
    Chen W, Cao F, Zheng W, Tian Y, Xianyu Y, Xu P, et al. Detection of the nanomolar level of total Cr[(III) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nanoscale. 2015;7(5):2042–9.CrossRefGoogle Scholar
  56. 56.
    Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, et al. Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. J Chem Educ. 2015;92(4):737–41.CrossRefGoogle Scholar
  57. 57.
    Su K, Zou Q, Zhou J, Zou L, Li H, Wang T, et al. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sensors Actuators B: Chemical. 2015;216:134–40.CrossRefGoogle Scholar
  58. 58.
    Masawat P, Harfield A, Namwong A. An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem. 2015;184:23–9.CrossRefGoogle Scholar
  59. 59.
    Nie H, Wang W, Li W, Nie Z, Yao S. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst. 2015;140(8):2771–7.CrossRefGoogle Scholar
  60. 60.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–707.CrossRefGoogle Scholar
  61. 61.
    Wang S, Tasoglu S, Chen PZ, Chen M, Akbas R, Wach S, et al. Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep. 2014;4:3796.CrossRefGoogle Scholar
  62. 62.
    Wang H, Li YJ, Wei JF, Xu JR, Wang YH, Zheng GX. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal Bioanal Chem. 2014;406(12):2799–807.CrossRefGoogle Scholar
  63. 63.
    Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, da Cruz Vasconcellos F, Lowe CR. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors Actuators B Chem. 2014;196:156–60.CrossRefGoogle Scholar
  64. 64.
    Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re1-re1.CrossRefGoogle Scholar
  65. 65.
    Gómez-Robledo L, López-Ruiz N, Melgosa M, Palma AJ, Capitán-Vallvey LF, Sánchez-Marañón M. Using the mobile phone as Munsell soil-colour sensor: an experiment under controlled illumination conditions. Comput Electron Agric. 2013;99:200–8.CrossRefGoogle Scholar
  66. 66.
    Moonrungsee N, Pencharee S, Jakmunee J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta. 2015;136:204–9.CrossRefGoogle Scholar
  67. 67.
    Vesali F, Omid M, Kaleita A, Mobli H. Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Comput Electron Agric. 2015;116:211–20.CrossRefGoogle Scholar
  68. 68.
    Intaravanne Y, Sumriddetchkajorn S. Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Comput Electron Agric. 2015;116:228–33.CrossRefGoogle Scholar
  69. 69.
    Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15(6):13752–62.CrossRefGoogle Scholar
  70. 70.
    Wu Y, Boonloed A, Sleszynski N, Koesdjojo M, Armstrong C, Bracha S, et al. Clinical chemistry measurements with commercially available test slides on a smartphone platform: colorimetric determination of glucose and urea. Clin Chim Acta. 2015;448:133–8.CrossRefGoogle Scholar
  71. 71.
    Thiha A, Ibrahim F. A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors. 2015;15(5):11431–41.CrossRefGoogle Scholar
  72. 72.
    Moonrungsee N, Pencharee S, Peamaroon N. Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrum Sci Technol. 2016;44(4):401–9.CrossRefGoogle Scholar
  73. 73.
    Levin S, Krishnan S, Rajkumar S, Halery N, Balkunde P. Monitoring of fluoride in water samples using a smartphone. Sci Total Environ. 2016;551–552:101–7.CrossRefGoogle Scholar
  74. 74.
    Wang L, Li B, Xu F, Shi X, Feng D, Wei D, et al. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron. 2016;79:1–8.CrossRefGoogle Scholar
  75. 75.
    Im SH, Kim KR, Park YM, Yoon JH, Hong JW, Yoon HC. An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device. Sensors Actuators B: Chemical. 2016;229:166–73.CrossRefGoogle Scholar
  76. 76.
  77. 77.
    Su K, Qiu X, Fang J, Zou Q, Wang P. An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system—Bionic e-Eye. Sensors Actuators B: Chemical. 2017;238:1165–72.CrossRefGoogle Scholar
  78. 78.
    Abderrahim M, MA S, Condezo-Hoyos L. A novel high-throughput image based rapid Folin-Ciocalteau assay for assessment of reducing capacity in foods. Talanta. 2016;152:82–9.CrossRefGoogle Scholar
  79. 79.
    Yang X, Wang Y, Liu W, Zhang Y, Zheng F, Wang S, et al. A portable system for on-site quantification of formaldehyde in air based on G-quadruplex halves coupled with a smartphone reader. Biosens Bioelectron. 2016;75:48–54.CrossRefGoogle Scholar
  80. 80.
    Mei Q, Jing H, Li Y, Yisibashaer W, Chen J, Nan Li B, et al. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens Bioelectron. 2016;75:427–32.CrossRefGoogle Scholar
  81. 81.
    Wang Y, Liu X, Chen P, Tran NT, Zhang J, Chia WS, et al. Smartphone spectrometer for colorimetric biosensing. Analyst. 2016;141(11):3233–8.CrossRefGoogle Scholar
  82. 82.
    Oliveira KA, Damasceno D, de Oliveira CR, da Silveira LA, de Oliveira AE, Coltro WK. Dengue diagnosis on laser printed microzones using smartphone-based detection and multivariate image analysis. Anal Methods. 2016;8(35):6506–11.CrossRefGoogle Scholar
  83. 83.
    Yang J-S, Shin J, Choi S, Jung H-I. Smartphone Diagnostics Unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensors Actuators B: Chemical. 2017;241:80–4.CrossRefGoogle Scholar
  84. 84.
    Kim SW, Cho IH, Lim GS, Park GN, Paek SH. Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis. Biosens Bioelectron. 2017;98:7–14.CrossRefGoogle Scholar
  85. 85.
    Kostelnik A, Cegan A, Pohanka M. Acetylcholinesterase inhibitors assay using colorimetric pH sensitive strips and image analysis by a smartphone. Int J Anal Chem. 2017;2017:3712384.CrossRefGoogle Scholar
  86. 86.
    Shin J, Choi S, Yang J-S, Song J, Choi J-S, Jung H-I. Smart Forensic Phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors Actuators B: Chemical. 2017;243:221–5.CrossRefGoogle Scholar
  87. 87.
    Li L, Liu Z, Zhang H, Yue W, Li C-W, Yi C. A point-of-need enzyme linked aptamer assay for Mycobacterium tuberculosis detection using a smartphone. Sensors Actuators B: Chemical. 2017;254:337–46.CrossRefGoogle Scholar
  88. 88.
    Kim SC, Jalal UM, Im SB, Ko S, Shim JS. A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sensors Actuators B Chem. 2017;239:52–9.CrossRefGoogle Scholar
  89. 89.
    Calabria D, Caliceti C, Zangheri M, Mirasoli M, Simoni P, Roda A. Smartphone–based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry. Biosens Bioelectron. 2017;94:124–30.CrossRefGoogle Scholar
  90. 90.
    Amirjani A, Fatmehsari DH. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta. 2017;176:242–6.CrossRefGoogle Scholar
  91. 91.
    Machado JMD, Soares RRG, Chu V, Conde JP. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens Bioelectron. 2018;99:40–6.CrossRefGoogle Scholar
  92. 92.
    Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, et al. Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sensors Actuators B: Chemical. 2017;251:134–43.CrossRefGoogle Scholar
  93. 93.
    Liu Z, Zhang Y, Xu S, Zhang H, Tan Y, Ma C, et al. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal Chim Acta. 2017;966:81–9.CrossRefGoogle Scholar
  94. 94.
    Ludwig SK, Zhu H, Phillips S, Shiledar A, Feng S, Tseng D, et al. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Anal Bioanal Chem. 2014;406(27):6857–66.CrossRefGoogle Scholar
  95. 95.
    Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. Lab Chip. 2013;13(21):4231–8.CrossRefGoogle Scholar
  96. 96.
    Zhang C, Kim JP, Creer M, Yang J, Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens Bioelectron. 2017;97:164–8.CrossRefGoogle Scholar
  97. 97.
    Liao SC, Peng J, Mauk MG, Awasthi S, Song J, Friedman H, et al. Smart Cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors Actuators B: Chemical. 2016;229:232–8.CrossRefGoogle Scholar
  98. 98.
    Rajendran VK, Bakthavathsalam P, Jaffar Ali BM. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta. 2014;181(15–16):1815–21.CrossRefGoogle Scholar
  99. 99.
    Walker FM, Ahmad KM, Eisenstein M, Soh HT. Transformation of personal computers and mobile phones into genetic diagnostic systems. Anal Chem. 2014;86(18):9236–41.CrossRefGoogle Scholar
  100. 100.
    Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon J-Y. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4(22):11103.CrossRefGoogle Scholar
  101. 101.
    Lee D, Chou WP, Yeh SH, Chen PJ, Chen PH. DNA detection using commercial mobile phones. Biosens Bioelectron. 2011;26(11):4349–54.CrossRefGoogle Scholar
  102. 102.
    Nicolini AM, Fronczek CF, Yoon JY. Droplet-based immunoassay on a ‘sticky’ nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron. 2015;67:560–9.CrossRefGoogle Scholar
  103. 103.
    Thom NK, Lewis GG, Yeung K, Phillips ST. Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv. 2014;4(3):1334–40.CrossRefGoogle Scholar
  104. 104.
    Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano. 2013;7(10):9147–55.CrossRefGoogle Scholar
  105. 105.
    Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.CrossRefGoogle Scholar
  106. 106.
    Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.CrossRefGoogle Scholar
  107. 107.
    Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron. 2015;70:5–14.CrossRefGoogle Scholar
  108. 108.
    Hossain A, Canning J, Ast S, Rutledge PJ, Teh Li Y, Jamalipour A. Lab-in-a-Phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sensors J. 2015;15(9):5095–102.CrossRefGoogle Scholar
  109. 109.
    Awqatty B, Samaddar S, Cash KJ, Clark HA, Dubach JM. Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst. 2014;139(20):5230–8.CrossRefGoogle Scholar
  110. 110.
    Petryayeva E, Algar WR. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst. 2015;140(12):4037–45.CrossRefGoogle Scholar
  111. 111.
    Ming K, Kim J, Biondi MJ, Syed A, Chen K, Lam A, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano. 2015;9(3):3060–74.CrossRefGoogle Scholar
  112. 112.
    Wargocki P, Deng W, Anwer AG, Goldys EM. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system. Sensors. 2015;15(5):11653–64.CrossRefGoogle Scholar
  113. 113.
    Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM, et al. Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics. 2016;6(2):231–42.CrossRefGoogle Scholar
  114. 114.
    Bueno D, Muñoz R, Marty JL. Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors Actuators B: Chemical. 2016;232:462–8.CrossRefGoogle Scholar
  115. 115.
    Priye A, Wong S, Bi Y, Carpio M, Chang J, Coen M, et al. Lab-on-a-Drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem. 2016;88(9):4651–60.CrossRefGoogle Scholar
  116. 116.
    Slusarewicz P, Pagano S, Mills C, Popa G, Chow KM, Mendenhall M, et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol. 2016;46(8):485–93.CrossRefGoogle Scholar
  117. 117.
    Cho S, Islas-Robles A, Nicolini AM, Monks TJ, Yoon JY. In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron. 2016;86:697–705.CrossRefGoogle Scholar
  118. 118.
    Ko J, Hemphill MA, Gabrieli D, Wu L, Yelleswarapu V, Lawrence G, et al. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery. Sci Rep. 2016;6:31215.CrossRefGoogle Scholar
  119. 119.
    Joh DY, Hucknall AM, Wei Q, Mason KA, Lund ML, Fontes CM, et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc Natl Acad Sci U S A. 2017;114(34):E7054–E62.CrossRefGoogle Scholar
  120. 120.
    Jiang L, Mancuso M, Lu Z, Akar G, Cesarman E, Erickson D. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep. 2014;4:4137.CrossRefGoogle Scholar
  121. 121.
    Lee WI, Shrivastava S, Duy LT, Yeong Kim B, Son YM, Lee NE. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens Bioelectron. 2017;94:643–50.CrossRefGoogle Scholar
  122. 122.
    Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, et al. M kit: a cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron. 2017;99:259–67.CrossRefGoogle Scholar
  123. 123.
    Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ. A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron. 2017;98:36–40.CrossRefGoogle Scholar
  124. 124.
    Priye A, Bird SW, Light YK, Ball CS, Negrete OA, Meagher RJ. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep. 2017;7:44778.CrossRefGoogle Scholar
  125. 125.
    Knowlton S, Joshi A, Syrrist P, Coskun AF, Tasoglu S. 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab Chip. 2017;17(16):2839–51.CrossRefGoogle Scholar
  126. 126.
    Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.CrossRefGoogle Scholar
  127. 127.
    Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.CrossRefGoogle Scholar
  128. 128.
    Quimbar ME, Krenek KM, Lippert AR. A chemiluminescent platform for smartphone monitoring of H2O2 in human exhaled breath condensates. Methods. 2016;109:123–30.CrossRefGoogle Scholar
  129. 129.
    Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2014;64:63–8.CrossRefGoogle Scholar
  130. 130.
    Hao N, Xiong M, Zhang JD, Xu JJ, Chen HY. Portable thermo-powered high-throughput visual electrochemiluminescence sensor. Anal Chem. 2013;85(24):11715–9.CrossRefGoogle Scholar
  131. 131.
    Doeven EH, Barbante GJ, Harsant AJ, Donnelly PS, Connell TU, Hogan CF, et al. Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB on–the–go’ protocol. Sensors Actuators B: Chemical. 2015;216:608–13.CrossRefGoogle Scholar
  132. 132.
    Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem. 2016;408(11):2913–25.CrossRefGoogle Scholar
  133. 133.
    Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A. Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells”. Sensors Actuators B: Chemical. 2016;225:249–57.CrossRefGoogle Scholar
  134. 134.
    Arts R, Den Hartog I, Zijlema SE, Thijssen V, van der Beelen SH, Merkx M. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Anal Chem. 2016;88(8):4525–32.CrossRefGoogle Scholar
  135. 135.
    Spyrou EM, Kalogianni DP, Tragoulias SS, Ioannou PC, Christopoulos TK. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms. Anal Bioanal Chem. 2016;408:7393–402.CrossRefGoogle Scholar
  136. 136.
    He M, Li Z, Ge Y, Liu Z. Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem. 2016;88(3):1530–4.CrossRefGoogle Scholar
  137. 137.
    Long KD, Yu H, Cunningham BT. Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomed Opt Express. 2014;5(11):3792–806.CrossRefGoogle Scholar
  138. 138.
    Zhang C, Cheng G, Edwards P, Zhou MD, Zheng S, Liu Z. G-Fresnel smartphone spectrometer. Lab Chip. 2016;16(2):246–50.CrossRefGoogle Scholar
  139. 139.
    Yang C, Shi K, Edwards P, Liu Z. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Opt Express. 2010;18(23):23529–34.CrossRefGoogle Scholar
  140. 140.
    Kwon H, Park J, An Y, Sim J, Park S. A smartphone metabolomics platform and its application to the assessment of cisplatin-induced kidney toxicity. Anal Chim Acta. 2014;845:15–22.CrossRefGoogle Scholar
  141. 141.
    Cao T, Thompson JE. Remote sensing of atmospheric optical depth using a smartphone sun photometer. PLoS One. 2014;9(1):e84119.CrossRefGoogle Scholar
  142. 142.
    Arafat Hossain M, Canning J, Ast S, Cook K, Rutledge PJ, Jamalipour A. Combined “dual” absorption and fluorescence smartphone spectrometers. Opt Lett. 2015;40(8):1737–40.CrossRefGoogle Scholar
  143. 143.
    Intaravanne Y, Sumriddetchkajorn S, Nukeaw J. Cell phone-based two-dimensional spectral analysis for banana ripeness estimation. Sensors Actuators B: Chemical. 2012;168:390–4.CrossRefGoogle Scholar
  144. 144.
    Dutta S, Choudhury A, Nath P. Evanescent wave coupled spectroscopic sensing using smartphone. IEEE Photon Technol Lett. 2014;26(6):568–70.CrossRefGoogle Scholar
  145. 145.
    Iqbal Z, Bjorklund RB. Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages. Int J Food Sci Technol. 2011;46(11):2428–36.CrossRefGoogle Scholar
  146. 146.
    Dutta S, Sarma D, Nath P. Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Adv. 2015;5(5):057151.CrossRefGoogle Scholar
  147. 147.
    Grasse EK, Torcasio MH, Smith AW. Teaching UV–Vis spectroscopy with a 3D-printable smartphone spectrophotometer. J Chem Educ. 2015;93(1):146–51.CrossRefGoogle Scholar
  148. 148.
    Debus B, Kirsanov D, Yaroshenko I, Sidorova A, Piven A, Legin A. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta. 2015;895:71–9.CrossRefGoogle Scholar
  149. 149.
    Wang L-J, Chang Y-C, Ge X, Osmanson AT, Du D, Lin Y, et al. Smartphone optosensing platform using a DVD grating to detect neurotoxins. ACS Sensors. 2016;1(4):366–73.CrossRefGoogle Scholar
  150. 150.
    Hossain MA, Canning J, Cook K, Jamalipour A. Optical fiber smartphone spectrometer. Opt Lett. 2016;41(10):2237–40.CrossRefGoogle Scholar
  151. 151.
    Wang LJ, Chang YC, Sun R, Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens Bioelectron. 2017;87:686–92.CrossRefGoogle Scholar
  152. 152.
  153. 153.
    Choi S, Kim S, Yang J-S, Lee J-H, Joo C, Jung H-I. Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone. Sens Bio-Sens Res. 2014;2:8–11.CrossRefGoogle Scholar
  154. 154.
    Lin R, Skandarajah A, Gerver RE, Neira HD, Fletcher DA, Herr AE. A lateral electrophoretic flow diagnostic assay. Lab Chip. 2015;15(6):1488–96.CrossRefGoogle Scholar
  155. 155.
    Yu L, Shi Z, Fang C, Zhang Y, Liu Y, Li C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron. 2015;69:307–15.CrossRefGoogle Scholar
  156. 156.
    Preechaburana P, Macken S, Suska A, Filippini D. HDR imaging evaluation of a NT-proBNP test with a mobile phone. Biosens Bioelectron. 2011;26(5):2107–13.CrossRefGoogle Scholar
  157. 157.
    Lee S, O’Dell D, Hohenstein J, Colt S, Mehta S, Erickson D. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Sci Rep. 2016;6:28237.CrossRefGoogle Scholar
  158. 158.
  159. 159.
    Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci U S A. 2014;111(33):11984–9.CrossRefGoogle Scholar
  160. 160.
    Zhang D, Jiang J, Chen J, Zhang Q, Lu Y, Yao Y, et al. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens Bioelectron. 2015;70:81–8.CrossRefGoogle Scholar
  161. 161.
    Jiang J, Wang X, Chao R, Ren Y, Hu C, Xu Z, et al. Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B: Chemical. 2014;193:653–9.CrossRefGoogle Scholar
  162. 162.
    Sun A, Wambach T, Venkatesh A, Hall DA, editors. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. Biomedical Circuits and Systems Conference (BioCAS), IEEE; 2014. p. 312–5.Google Scholar
  163. 163.
    Delaney JL, Doeven EH, Harsant AJ, Hogan CF. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta. 2013;790:56–60.CrossRefGoogle Scholar
  164. 164.
    Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, et al. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators B: Chemical. 2016;222:994–1002.CrossRefGoogle Scholar
  165. 165.
    Sun AC, Yao C, Venkatesh AG, Hall DA. An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B: Chemical. 2016;235:126–35.CrossRefGoogle Scholar
  166. 166.
    Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron. 2016;86:690–6.CrossRefGoogle Scholar
  167. 167.
    Giordano GF, Vicentini MB, Murer RC, Augusto F, Ferrão MF, Helfer GA, et al. Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochim Acta. 2016;219:170–7.CrossRefGoogle Scholar
  168. 168.
    Ji D, Liu L, Li S, Chen C, Lu Y, Wu J, et al. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron. 2017;98:449–56.CrossRefGoogle Scholar
  169. 169.
    Uliana CV, Peverari CR, Afonso AS, Cominetti MR, Faria RC. Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens Bioelectron. 2018;99:156–62.CrossRefGoogle Scholar
  170. 170.
    Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.CrossRefGoogle Scholar
  171. 171.
    Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip. 2013;13(20):4015–23.CrossRefGoogle Scholar
  172. 172.
    Koydemir HC, Gorocs Z, Tseng D, Cortazar B, Feng S, Chan RYL, et al. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip. 2014;15(5):1284–93.CrossRefGoogle Scholar
  173. 173.
    Wei Q, Luo W, Chiang S, Kappel T, Mejia C, Tseng D, et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano. 2014;8(12):12725–33.CrossRefGoogle Scholar
  174. 174.
    Skandarajah A, Reber CD, Switz NA, Fletcher DA. Quantitative imaging with a mobile phone microscope. PLoS One. 2014;9(5):e96906.CrossRefGoogle Scholar
  175. 175.
    Roy S, Pantanowitz L, Amin M, Seethala RR, Ishtiaque A, Yousem SA, et al. Smartphone adapters for digital photomicrography. J Pathol. 2014;1:24.Google Scholar
  176. 176.
    Lee M, Yaglidere O, Ozcan A. Field-portable reflection and transmission microscopy based on lensless holography. Biomed Optics Exp. 2011;2(9):2721–30.CrossRefGoogle Scholar
  177. 177.
    Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med. 2017;9(382):eaai7863.CrossRefGoogle Scholar
  178. 178.
    Bremer K, Roth B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt Express. 2015;23(13):17179–84.CrossRefGoogle Scholar
  179. 179.
    Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W. Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep. 2015;5:12864.CrossRefGoogle Scholar
  180. 180.
    Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY, Ho MH, et al. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron. 2016;75:88–95.CrossRefGoogle Scholar
  181. 181.
    Dutta S, Saikia K, Nath P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv. 2016;6(26):21871–80.CrossRefGoogle Scholar
  182. 182.
    Fu Q, Wu Z, Xu F, Li X, Yao C, Xu M, et al. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16(10):1927–33.CrossRefGoogle Scholar
  183. 183.
    Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal AE, et al. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensors Actuators B: Chemical. 2017;239:571–7.CrossRefGoogle Scholar
  184. 184.
    Zhang J, Khan I, Zhang Q, Liu X, Dostalek J, Liedberg B, et al. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens Bioelectron. 2018;99:312–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  • John H. T. Luong
    • 2
  1. 1.Labsystems Diagnostics OyVantaaFinland
  2. 2.Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland

Personalised recommendations