An Overview of Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management

  • Sandeep Kumar Vashist
  • John H. T. Luong


Point-of-care (POC) technologies have advanced considerably during the last decade to pave the way to the emergence of next-generation healthcare monitoring and management. The most prominent developments encompass the smartphone (SP)-based technologies, paper-based assays (PBA), lab-on-a-chip (LOC) platforms, microfluidic operations, new biosensors, rapid assay formats, automated and fully integrated assay technologies, prolonged reagent storage concepts, and novel bioanalytical technologies. The advances in complementary technologies would provide considerable support to the development of critically improved POC technologies. Although paper- and LOC-based assays are cost-effective and simple, emerging SP-based technologies become the ideal POC solution for healthcare due to their enormous outreach and enriched features. Such POC technologies could increase the outreach of healthcare for remote and decentralized settings worldwide. The recent trend is strongly inclined toward mobile healthcare (mH), which would lead to critically improved healthcare monitoring and management.


Point-of-care technologies Healthcare Monitoring Management Cellphone Paper Lab-on-a-chip Assay formats Prolonged storage Smart applications 


  1. 1.
    Kost GJ. Guidelines for point-of-care testing. Improving patient outcomes. Am J Clin Pathol. 1995;104(4 Suppl 1):S111–27.Google Scholar
  2. 2.
    Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.CrossRefGoogle Scholar
  3. 3.
    Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2012;84(2):487–515.CrossRefGoogle Scholar
  4. 4.
    Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30(6):887–98.CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Blood glucose monitoring devices (Meters, test strips, lancets) - Global pipeline analysis, competitive landscape and market forecasts to 2017. Accessed 30 Dec 2017.
  7. 7.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRefGoogle Scholar
  8. 8.
    International Diabetes Federation (IDF). Diabetes atlas. 8th ed. Accessed 30 Dec 2017.
  9. 9.
    Wild SH, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: response to Rathman and Giani. Diabetes Care. 2004;27(10):2568–9.CrossRefGoogle Scholar
  10. 10.
    Sexually Transmitted Infections (STIs). Accessed 30 Dec 2017.
  11. 11.
    Cardiovascular diseases (CVDs). Accessed 30 Dec 2017.
  12. 12.
    Tuberculosis. Accessed 30 Dec 2017.
  13. 13.
  14. 14.
  15. 15.
    Depression. Accessed 30 Dec 2017.
  16. 16.
    Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.CrossRefGoogle Scholar
  17. 17.
    Vashist SK. Continuous glucose monitoring systems: a review. Diagnostics. 2013;3(4):385–412.CrossRefGoogle Scholar
  18. 18.
    Vashist SK, Luong JHT. Point-of-care glucose detection for diabetic monitoring and management. Boca Raton: CRC Press; 2017.Google Scholar
  19. 19.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta. 2011;703(2):124–36.CrossRefGoogle Scholar
  20. 20.
    Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE, editors. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–41.Google Scholar
  21. 21.
    Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.CrossRefGoogle Scholar
  22. 22.
    Vashist SK. Too much sitting: a potential health hazard and a global call to action. Aust J Basic Appl Sci. 2015;11:131–5.CrossRefGoogle Scholar
  23. 23.
    Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection—harnessing the web for public health surveillance. N Engl J Med. 2009;360(21):2153–7.CrossRefGoogle Scholar
  24. 24.
    Ostroff SM, Griffin PM, Tauxe RV, Shipman LD, Greene KD, Wells JG, et al. A statewide outbreak of Escherichia coli 0157: H7 infections in Washington state. Am J Epidemiol. 1990;132(2):239–47.CrossRefGoogle Scholar
  25. 25.
    Davis B, Brogan R. A widespread community outbreak of E coli 0157 infection in Scotland. Public Health. 1995;109(5):381–8.CrossRefGoogle Scholar
  26. 26.
    Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285(8):1059–70.CrossRefGoogle Scholar
  27. 27.
    Wein LM, Liu Y. Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci. 2005;102(28):9984–9.CrossRefGoogle Scholar
  28. 28.
    Hennessy TW, Hedberg CW, Slutsker L, White KE, Besser-Wiek JM, Moen ME, et al. A national outbreak of Salmonella enteritidis infections from ice cream. The investigation team. N Engl J Med. 1996;334(20):1281–6.CrossRefGoogle Scholar
  29. 29.
    De Buyser ML, Dufour B, Maire M, Lafarge V. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int J Food Microbiol. 2001;67(1–2):1–17.CrossRefGoogle Scholar
  30. 30.
    Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, et al. Prevalence of campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the greater Washington, DC, area. Appl Environ Microbiol. 2001;67(12):5431–6.Google Scholar
  31. 31.
    Taylor SL, Nordlee JA, Niemann LM, Lambrecht DM. Allergen immunoassays—considerations for use of naturally incurred standards. Anal Bioanal Chem. 2009;395(1):83–92.CrossRefGoogle Scholar
  32. 32.
    Tucker JD, Bien CH, Peeling RW. Point-of-care testing for sexually transmitted infections: recent advances and implications for disease control. Curr Opin Infect Dis. 2013;26(1):73–9.CrossRefGoogle Scholar
  33. 33.
    Global estimates by WHO region. Accessed 30 Dec 2017.
  34. 34.
    Boonlert W, Lolekha PH, Kost GJ, Lolekha S. Comparison of the performance of point-of-care and device analyzers to hospital laboratory instruments. Point of Care. 2003;2(3):172–8.Google Scholar
  35. 35.
    Kost GJ, Vu HT, Lee JH, Bourgeois P, Kiechle FL, Martin C, et al. Multicenter study of oxygen-insensitive handheld glucose point-of-care testing in critical care/hospital/ambulatory patients in the United States and Canada. Crit Care Med. 1998;26(3):581–90.CrossRefGoogle Scholar
  36. 36.
    Young DS. Effects of drugs on clinical laboratory tests. Ann Clin Biochem. 1997;34(6):579–81.CrossRefGoogle Scholar
  37. 37.
    FreeStyle Libre. Accessed 30 Dec 2017.
  38. 38.
  39. 39.
    Kost GJ, Tran NK. Point-of-care testing and cardiac biomarkers: the standard of care and vision for chest pain centers. Cardiol Clin. 2005;23(4):467–90.. viCrossRefGoogle Scholar
  40. 40.
    Floriano PN, Christodoulides N, Miller CS, Ebersole JL, Spertus J, Rose BG, et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin Chem. 2009;55(8):1530–8.CrossRefGoogle Scholar
  41. 41.
    Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol. 2006;48(1):1–11.CrossRefGoogle Scholar
  42. 42.
  43. 43.
  44. 44.
  45. 45.
  46. 46.
  47. 47.
    Siemens Healthcare GmbH. Point-of-Care Testing. Accessed 30 Dec 2017.
  48. 48.
  49. 49.
    Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRefGoogle Scholar
  50. 50.
    Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRefGoogle Scholar
  51. 51.
    Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.CrossRefGoogle Scholar
  52. 52.
    Vashist SK, Luong JHT. Handbook of immunoassay technologies: approaches, performances, and applications. 1st ed. Cambridge, MA: Academic Press; 2018.Google Scholar
  53. 53.
    Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66(0):169–76.CrossRefGoogle Scholar
  54. 54.
    Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.CrossRefGoogle Scholar
  55. 55.
    Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.CrossRefGoogle Scholar
  56. 56.
    Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.CrossRefGoogle Scholar
  57. 57.
    Rajendran VK, Bakthavathsalam P, Ali BMJ. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta. 2014;181(15–16):1815–21.CrossRefGoogle Scholar
  58. 58.
    Walker FM, Ahmad KM, Eisenstein M, Soh HT. Transformation of personal computers and mobile phones into genetic diagnostic systems. Anal Chem. 2014;86(18):9236–41.CrossRefGoogle Scholar
  59. 59.
    Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.CrossRefGoogle Scholar
  60. 60.
    Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.CrossRefGoogle Scholar
  61. 61.
    Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.CrossRefGoogle Scholar
  62. 62.
    Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed Eng. 2012;51(46):11585–8.CrossRefGoogle Scholar
  63. 63.
    Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep. 2014;4:6789.CrossRefGoogle Scholar
  64. 64.
    Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.CrossRefGoogle Scholar
  65. 65.
    Wang X, Gartia MR, Jiang J, Chang T-W, Qian J, Liu Y, et al. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem. 2015;209:677–85.CrossRefGoogle Scholar
  66. 66.
    Sun A, Wambach T, Venkatesh A, Hall DA, editors. A multitechnique reconfigurable electrochemical biosensor for integration into mobile technologies. Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE; DOI: 10.1109/BioCAS.2015.7348314.Google Scholar
  67. 67.
    Sun AC, Yao C, Venkatesh AG, Hall DA. An efficient power harvesting Mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B: Chemical. 2016;235:126–35.CrossRefGoogle Scholar
  68. 68.
    Sun A, Wambach T, Venkatesh A, Hall DA, editors. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE; DOI: 10.1109/BioCAS.2014.6981725.Google Scholar
  69. 69.
    You DJ, San Park T, Yoon J-Y. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.CrossRefGoogle Scholar
  70. 70.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRefGoogle Scholar
  71. 71.
    iHealth Align. Accessed 30 Dec 2017.
  72. 72.
    Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.CrossRefGoogle Scholar
  73. 73.
    Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.CrossRefGoogle Scholar
  74. 74.
    Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRefGoogle Scholar
  75. 75.
    Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.CrossRefGoogle Scholar
  76. 76.
    Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.CrossRefGoogle Scholar
  77. 77.
    Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano. 2013;7(10):9147–55.CrossRefGoogle Scholar
  78. 78.
    Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re1-re1.CrossRefGoogle Scholar
  79. 79.
    Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.CrossRefGoogle Scholar
  80. 80.
    Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.CrossRefGoogle Scholar
  81. 81.
    Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.CrossRefGoogle Scholar
  82. 82.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.CrossRefGoogle Scholar
  83. 83.
    Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.CrossRefGoogle Scholar
  84. 84.
    Fernandez-Sanchez C, McNeil CJ, Rawson K, Nilsson O, Leung HY, Gnanapragasam V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J Immunol Methods. 2005;307(1–2):1–12.CrossRefGoogle Scholar
  85. 85.
    Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.CrossRefGoogle Scholar
  86. 86.
    Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.CrossRefGoogle Scholar
  87. 87.
    Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.CrossRefGoogle Scholar
  88. 88.
    van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.CrossRefGoogle Scholar
  89. 89.
    Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81(4):1660–8.CrossRefGoogle Scholar
  90. 90.
    Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.CrossRefGoogle Scholar
  91. 91.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.CrossRefGoogle Scholar
  92. 92.
    Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.CrossRefGoogle Scholar
  93. 93.
    Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed Eng. 2010;49(28):4771–4.CrossRefGoogle Scholar
  94. 94.
    Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.CrossRefGoogle Scholar
  95. 95.
    Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.CrossRefGoogle Scholar
  96. 96.
    Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.CrossRefGoogle Scholar
  97. 97.
    Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.CrossRefGoogle Scholar
  98. 98.
    Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.CrossRefGoogle Scholar
  99. 99.
    Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.CrossRefGoogle Scholar
  100. 100.
    Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.CrossRefGoogle Scholar
  101. 101.
    Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.CrossRefGoogle Scholar
  102. 102.
    Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRefGoogle Scholar
  103. 103.
    Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–83.CrossRefGoogle Scholar
  104. 104.
    Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.CrossRefGoogle Scholar
  105. 105.
    Piccolo Xpress. Accessed 30 Dec 2017.
  106. 106.
  107. 107.
    Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–73.CrossRefGoogle Scholar
  108. 108.
    Beaudet L, Rodriguez-Suarez R, Venne M-H, Caron M, Bédard J, Brechler V, et al. AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat Methods. 2008;5(12).CrossRefGoogle Scholar
  109. 109.
    Kai J, Puntambekar A, Santiago N, Lee SH, Sehy DW, Moore V, et al. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab Chip. 2012;12(21):4257–62.CrossRefGoogle Scholar
  110. 110.
    MSD Technology Platform. Accessed 30 Dec 2017.
  111. 111.
    Vashist SK, Czilwik G, Venkatesh AG. Elisa system and related methods. WIPO Patent Pub No WO/2014/198836.Google Scholar
  112. 112.
    Vashist SK, Czilwik G, van Oordt T, von Stetten F, Zengerle R, Marion Schneider E, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30min. Anal Biochem. 2014;456:32–7.CrossRefGoogle Scholar
  113. 113.
    Then WL, Garnier G. Paper diagnostics in biomedicine. Rev Anal Chem. 2013;32(4):269–94.CrossRefGoogle Scholar
  114. 114.
    Jahanshahi-Anbuhi S, Pennings K, Leung V, Liu M, Carrasquilla C, Kannan B, et al. Pullulan encapsulation of labile biomolecules to give stable bioassay tablets. Angew Chem Int Ed Eng. 2014;53(24):6155–8.CrossRefGoogle Scholar
  115. 115.
    Ramachandran S, Fu E, Lutz B, Yager P. Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst. 2014;139(6):1456–62.CrossRefGoogle Scholar
  116. 116.
    Dawson EC, Homan JD, Van Weemen BK. Stabilization of peroxidase. US Patent 4331761.Google Scholar
  117. 117.
    Bioanalytical Method Validation. Accessed 30 Dec 2017.
  118. 118.
    Guideline on Bioanalytical Method Validation. Accessed 30 Dec 2017.
  119. 119.
    Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRefGoogle Scholar
  120. 120.
    Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.CrossRefGoogle Scholar
  121. 121.
    Vashist SK, Venkatesh A, Mitsakakis K, Czilwik G, Roth G, von Stetten F, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. Bionanoscience. 2012;2(3):115–26.CrossRefGoogle Scholar
  122. 122.
    Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41(6):2323–43.CrossRefGoogle Scholar
  123. 123.
    Pearson S, Benameur A, editors. Privacy, security and trust issues arising from cloud computing. IEEE Sec Int Conf Cloud Comput Technol Sci (CloudCom). 2010;2010:693–702.
  124. 124.
    Subashini S, Kavitha V. A survey on security issues in service delivery models of cloud computing. JNCA. 2011;34(1):1–11.Google Scholar
  125. 125.
    Chen D, Zhao H, editors. Data security and privacy protection issues in cloud computing. Int Conf Comp Sci Electron Eng. 2012;2012:647–51.
  126. 126.
    Yu S, Wang C, Ren K, Lou W, editors. Achieving secure, scalable, and fine-grained data access control in cloud computing. Proc IEEE Infocom. 2010;2010:1–9.
  127. 127.
    Junker R, Schlebusch H, Luppa PB. Point-of-care testing in hospitals and primary care. Dtsch Arztebl Int. 2010;107(33):561–7.Google Scholar
  128. 128.
    Weisbrod BA. The health care quadrilemma: an essay on technological change, insurance, quality of care, and cost containment. J Econ Lit. 1991;29(2):523–52.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandeep Kumar Vashist
    • 1
  • John H. T. Luong
    • 2
  1. 1.Labsystems Diagnostics OyVantaaFinland
  2. 2.Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF)University College CorkCorkIreland

Personalised recommendations