For What It’s Worth: A Multi-industry Survey on Current and Expected Use of Big Data Technologies

  • Elisa Rossi
  • Cinzia Rubattino
  • Gianluigi ViscusiEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 341)


This article discusses the results of a multi-industry and multi-country survey carried out to understand the needs, requirements, and use of big data and analytics by public and private organizations in decision-making, business processes and emerging business models. In particular, these issues are analyzed in specific industries where big data exploitation may have not only an economic value but also and an impact on social value dimensions such as, e.g., public and personal safety. Furthermore, the survey aims at questioning the characteristics of big data ecosystems in different and specific domains, thus identifying existing or potential barriers to the development of new data-driven industrial sectors along the big data information value chain. Finally, the authors have identified three key challenges (big data efficiency, effectiveness, and accessibility) to classify the survey results that showed low utilization rate of the data collected, lack of right tools and capabilities, the low rate of digital transformation of the companies as the key concerns for the respondents.


Big data Big data technologies Survey Big data use 



This work was supported by the AEGIS project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 732189. The document reflects only the author’s views and the Commission is not responsible for any use that may be made of information contained therein.


  1. 1.
    The Economist: Big Data (2011)Google Scholar
  2. 2.
    The Economist: Data, data everywhere (2010)Google Scholar
  3. 3.
  4. 4.
    Kitchin, R., McArdle, G.: What makes big data, big data? Exploring the ontological characteristics of 26 datasets. Big Data Soc. 3, 2053951716631130 (2016)CrossRefGoogle Scholar
  5. 5.
    Dumbill, E.: Making sense of big data (editorial). Big Data 1, 1–2 (2013)CrossRefGoogle Scholar
  6. 6.
    Viscusi, G., Batini, C.: Digital information asset evaluation: characteristics and dimensions. In: Caporarello, L., Di Martino, B., Martinez, M. (eds.) Smart Organizations and Smart Artifacts. LNISO, vol. 7, pp. 77–86. Springer, Cham (2014). Scholar
  7. 7.
    Buhl, H.U., Röglinger, M., Moser, F., Heidemann, J.: big data - a fashionable topic with(out) sustainable relevance for research and practice? Bus. Inf. Syst. Eng. 5, 65–69 (2013)CrossRefGoogle Scholar
  8. 8.
    Benington, J., Moore, M.H.: Public Value - Theory and Practice. Palgrave Macmillan, Basingstoke (2011)Google Scholar
  9. 9.
    Cordella, A., Bonina, C.M.: A public value perspective for ICT enabled public sector reforms: a theoretical reflection. Gov. Inf. Q. 29, 512–520 (2012)CrossRefGoogle Scholar
  10. 10.
    Morris, S., Shin, H.: Social value of public information. Am. Econ. Rev. 92, 1521–1534 (2002)CrossRefGoogle Scholar
  11. 11.
    Batini, C., Rula, A., Scannapieco, M., Viscusi, G.: From data quality to big data quality. J. Database Manag. 26, 60–82 (2015)CrossRefGoogle Scholar
  12. 12.
    Viscusi, G., Castelli, M., Batini, C.: Assessing social value in open data initiatives: a framework. Futur. Internet 6, 498–517 (2014)CrossRefGoogle Scholar
  13. 13.
    Abbasi, A., Sarker, S., Chiang, R.H.L.: Big data research in information systems: toward an inclusive research agenda. J. Assoc. Inf. Syst. 17, 3 (2016)Google Scholar
  14. 14.
    Oliveira, T., Martins, M.: Literature review of information technology adoption models at firm level. Electron. J. Inf. 14, 110–121 (2011)Google Scholar
  15. 15.
    Thong, J.Y.L.: An integrated model of information systems adoption in small businesses. J. Manag. Inf. Syst. 15, 187–214 (1999)CrossRefGoogle Scholar
  16. 16.
    Oliveira, T., Thomas, M., Espadanal, M.: Assessing the determinants of cloud computing adoption: an analysis of the manufacturing and services sectors. Inf. Manag. 51, 497–510 (2014)CrossRefGoogle Scholar
  17. 17.
    Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989)CrossRefGoogle Scholar
  18. 18.
    Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39, 273–315 (2008)CrossRefGoogle Scholar
  19. 19.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)CrossRefGoogle Scholar
  20. 20.
    DeLone, W.H., McLean, E.R.: Information system success: the quest for the dependent variable. Inf. Syst. Res. 3, 60–95 (1992)CrossRefGoogle Scholar
  21. 21.
    DeLone, W.H., McLean, E.R.: The DeLone and McLean model of information systems success: a ten-year update. J. Manag. Inf. Syst. 19, 9–30 (2003)CrossRefGoogle Scholar
  22. 22.
    Petter, S., DeLone, W., McLean, E.: Measuring information systems success: models, dimensions, measures, and interrelationships. Eur. J. Inf. Syst. 17, 236–263 (2008)CrossRefGoogle Scholar
  23. 23.
    Ives, B., Olson, M.H., Baroudi, J.J.: The measurement of user information satisfaction. Commun. ACM 26, 785–793 (1983)CrossRefGoogle Scholar
  24. 24.
    Baroudi, J., Orlikowski, W.: A short-form measure of user information satisfaction: a psychometric evaluation and notes on use. J. Manag. Inf. Syst. 4, 44–59 (1988)CrossRefGoogle Scholar
  25. 25.
    Iivari, J., Ervasti, I.: User information satisfaction: IS implementability and effectiveness. Inf. Manag. 27, 205–220 (1994)CrossRefGoogle Scholar
  26. 26.
    Wixom, B.H., Todd, P.A.: A theoretical integration of user satisfaction and technology acceptance. Inf. Syst. Res. 16, 85–102 (2005)CrossRefGoogle Scholar
  27. 27.
    Ahituv, N.: A systematic approach towards assessing the value of an information system. MIS Q. 4, 61–75 (1980)CrossRefGoogle Scholar
  28. 28.
    Ahituv, N.: Assessing the value of information: problems and approaches. In: DeGross, J.I., Henderson, J.C., Konsynski, B.R. (eds.) International Conference on Information Systems (ICIS 1989), pp. 315–325. Massachusetts, Boston (1989)Google Scholar
  29. 29.
    Viscusi, G., Spahiu, B., Maurino, A., Batini, C.: Compliance with open government data policies: an empirical assessment of Italian local public administrations. Inf. Polity. 19, 263–275 (2014)CrossRefGoogle Scholar
  30. 30.
    Newsted, P.R., Huff, S.L., Munro, M.C.: Survey instruments in information systems. MIS Q. 22, 553 (1998)CrossRefGoogle Scholar
  31. 31.
    Dillman, D.A., Smyth, J.D., Christian, L.M.: Internet, Mail, and Mixed-Mode Surveys: The Tailored Design Method. Wiley, Hoboken (2008)Google Scholar
  32. 32.
    AEGIS: Project At a Glance.
  33. 33.
    Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data 2, 21 (2015)CrossRefGoogle Scholar
  34. 34.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19, 171–209 (2014)CrossRefGoogle Scholar
  35. 35.
    Porter, M.E., Millar, V.E.: How information gives you competitive advantage. Harv. Bus. Rev. 63, 149–162 (1985)Google Scholar
  36. 36.
    Zillner, S., et al.: Big data-driven innovation in industrial sectors. In: Cavanillas, J.M., Curry, E., Wahlster, W. (eds.) New Horizons for a Data-Driven Economy, pp. 169–178. Springer, Cham (2016). Scholar
  37. 37.
    Sambamurthy, V., Bharadwaj, A., Grover, V.: Shaping agility through digital options: reconceptualizing the role of information technology in contemporary firms. MIS Q. 27, 237–263 (2003)CrossRefGoogle Scholar
  38. 38.
    Chen, D.Q., Preston, D.S., Swink, M.: How the use of big data analytics affects value creation in supply chain management. J. Manag. Inf. Syst. 32, 4–39 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elisa Rossi
    • 1
  • Cinzia Rubattino
    • 1
  • Gianluigi Viscusi
    • 2
    Email author
  1. 1.GFT Italia S.r.l.GenoaItaly
  2. 2.École Polytechnique Fédérale de Lausanne (EPFL-CDM-MTEI-CSI)LausanneSwitzerland

Personalised recommendations