Advertisement

Content-Adaptive Steganalysis via Augmented Utilization of Selection-Channel Information

  • Shijun Zhou
  • Weixuan Tang
  • Shunquan Tan
  • Bin LiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)

Abstract

Modern adaptive image steganographic schemes embed secret message into textural regions to make it difficult for steganalytic detection. To overcome the presented challenges, existing steganalytic methods incorporate selection-channel information into steganalytic features so as to improve detection capability. In this paper, we extended the maxSRM steganalytic scheme by better exploiting the selection-channel information in two aspects. On one hand, we processed the embedding change probabilities by highlighting the large probabilities to obtain the so called augmented coefficients. On the other hand, we used the augmented coefficients weighted by the approximated probabilities of occurrence of image residuals for computing co-occurrence matrix in steganalytic features. In this way, we further utilized the selection-channel information and make pixels with high embedding change probability contribute more to final steganalysis features. Experiments on BOSSBase image dateset showed that our proposed steganalytic method achieved the state-of-the-art performance against various steganographic schemes under different payloads.

Keywords

Content-adaptive steganography Selection-channel Steganalysis Embedding change probability 

References

  1. 1.
    Li, B., He, J., Huang, J., Shi, Y.Q.: A survey on image steganography and steganalysis. Dep. Comput. 2(3), 288–289 (2011)Google Scholar
  2. 2.
    Ker, A.D., Bas, P., Craver, S., Fridrich, J.: Moving steganography and steganalysis from the laboratory into the real world. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 45–58 (2013)Google Scholar
  3. 3.
    Huang, F., Zhong, Y., Huang, J.: Improved algorithm of edge adaptive image steganography based on LSB matching revisited algorithm. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 19–31. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43886-2_2CrossRefGoogle Scholar
  4. 4.
    Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16435-4_13CrossRefGoogle Scholar
  5. 5.
    Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. In: ACM Workshop on Multimedia and Security, pp. 75–84 (2009)Google Scholar
  6. 6.
    Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: IEEE International Workshop on Information Forensics and Security, pp. 234–239 (2012)Google Scholar
  7. 7.
    Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. Eurasip J. Inf. Secur. 2014(1), 1 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: IEEE International Conference on Image Processing. pp. 4206–4210 (2015)Google Scholar
  9. 9.
    Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, K., Zhang, W., Zhou, H., Yu, N., Feng, G.: Defining cost functions for adaptive steganography at the microscale. In: IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2017)Google Scholar
  11. 11.
    Zhou, W., Zhang, W., Yu, N.: A new rule for cost reassignment in adaptive steganography. IEEE Trans. Inf. Forensics Secur. 12(11), 2654–2667 (2017)CrossRefGoogle Scholar
  12. 12.
    Li, B., Wang, M., Li, X., Tan, S., Huang, J.: A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 10(9), 1905–1917 (2015)CrossRefGoogle Scholar
  13. 13.
    Denemark, T., Fridrich, J.: Improving steganographic security by synchronizing the selection channel. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, pp. 5–14. ACM (2015)Google Scholar
  14. 14.
    Tang, W., Li, H., Luo, W., Huang, J.: Adaptive steganalysis against WOW embedding algorithm. In: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security. ACM (2014)Google Scholar
  15. 15.
    Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: IEEE International Workshop on Information Forensics and Security, pp. 48–53 (2014)Google Scholar
  16. 16.
    Tang, W., Li, H., Luo, W., Huang, J.: Adaptive steganalysis based on embedding probabilities of pixels. IEEE Trans. Inf. Forensics Secur. 11(4), 734–745 (2016)Google Scholar
  17. 17.
    Denemark, T., Fridrich, J., Comesaña-Alfaro, P.: Improving selection-channel-aware steganalysis features. Electron. Imaging 2016(8), 1–8 (2016)CrossRefGoogle Scholar
  18. 18.
    Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  19. 19.
    Holub, V., Fridrich, J.: Random projections of residuals for digital image steganalysis. IEEE Trans. Inf. Forensics Secur. 8(12), 1996–2006 (2013)CrossRefGoogle Scholar
  20. 20.
    Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)CrossRefGoogle Scholar
  21. 21.
    Yang, J., Liu, K., Kang, X., Wong, E., Shi, Y.: Steganalysis based on awareness of selection-channel and deep learning. In: Kraetzer, C., Shi, Y.-Q., Dittmann, J., Kim, H.J. (eds.) IWDW 2017. LNCS, vol. 10431, pp. 263–272. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64185-0_20CrossRefGoogle Scholar
  22. 22.
    Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24178-9_5CrossRefGoogle Scholar
  23. 23.
    Kodovský, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  24. 24.
    Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. MIT Press, Cambridge (1998)CrossRefGoogle Scholar
  25. 25.
    Boroumand, M., Fridrich, J.: Boosting steganalysis with explicit feature maps. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 149–157 (2016)Google Scholar
  26. 26.
    Li, B., Li, Z., Zhou, S., Tan, S., Zhang, X.: New steganalytic features for spatial image steganography based on derivative filters and threshold LBP operator. IEEE Trans. Inf. Forensics Secur. 13(5), 1242–1257 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shijun Zhou
    • 1
  • Weixuan Tang
    • 1
    • 2
  • Shunquan Tan
    • 3
  • Bin Li
    • 1
    Email author
  1. 1.Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media SecurityCollege of Information Engineering, Shenzhen UniversityShenzhenChina
  2. 2.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouChina
  3. 3.National Engineering Laboratory for Big Data System Computing TechnologyCollege of Computer Science and Software Engineering, Shenzhen UniversityShenzhenChina

Personalised recommendations