Advertisement

Improving the Embedding Strategy for Batch Adaptive Steganography

  • Xinzhi Yu
  • Kejiang Chen
  • Weiming ZhangEmail author
  • Yaofei Wang
  • Nenghai Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)

Abstract

Recent works have demonstrated that images with more texture regions should be selected as the sub-batch of covers to carry the total message when applying batch steganography to adaptive steganography and the core challenge of which is how to evaluate the texture complexity of image accurately according to the need of steganography security. In this paper, we first propose three methods for measuring the texture complexity of image to select images with highly textured content, then put forward our universal embedding strategy for batch adaptive steganography in both spatial and JPEG domain. To assess the security of embedding strategies for batch adaptive steganography, we use a pooling steganalysis method based majority decision for the omniscient Warden, who informed by the average payload, embedding algorithm and cover source. Given a batch of images, our proposed embedding strategy is to select images with largest residual values to carry the total message, which is named max-residual-greedy (MRG) strategy. Experimental results show that the proposed embedding strategy outperforms the previous ones for batch adaptive steganography.

Keywords

Batch adaptive steganography Embedding strategy Texture complexity 

References

  1. 1.
    Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  2. 2.
    Pevný, T., Fridrich, J.: Benchmarking for steganography. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 251–267. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88961-8_18CrossRefGoogle Scholar
  3. 3.
    Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)CrossRefGoogle Scholar
  4. 4.
    Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16435-4_13CrossRefGoogle Scholar
  5. 5.
    Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)CrossRefGoogle Scholar
  6. 6.
    Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)Google Scholar
  7. 7.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  8. 8.
    Denemark, T., Sedighi, V., Holub, V, Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 48–53. IEEE (2014)Google Scholar
  9. 9.
    Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014)CrossRefGoogle Scholar
  10. 10.
    Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4206–4210. IEEE (2014)Google Scholar
  11. 11.
    Guo, L., Ni, J., Su, W., Tang, C., Shi, Y.-Q.: Using statistical image model for JPEG steganography: uniform embedding revisited. IEEE Trans. Inf. Forensics Secur. 10(12), 2669–2680 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Zhang, X., Yin, Z.: Hybrid distortion function for JPEG steganography. J. Electron. Imaging 25(5), 050501 (2016)CrossRefGoogle Scholar
  13. 13.
    Wei, Q., Yin, Z., Wang, Z., Zhang, X.: Distortion function based on residual blocks for JPEG steganography. Multimed. Tools Appl. 77, 1–14 (2017)Google Scholar
  14. 14.
    Ker, A.D., Pevny, T.: Batch steganography in the real world. In: Proceedings of the on Multimedia and Security, MM&Sec 2012, pp. 1–10. ACM, New York (2012)Google Scholar
  15. 15.
    Guo, L., Ni, J., Shi, Y.Q.: An efficient JPEG steganographic scheme using uniform embedding. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 169–174. IEEE (2012)Google Scholar
  16. 16.
    Zhao, Z., Guan, Q., Zhao, X., Yu, H., Liu, C.: Embedding strategy for batch adaptive steganography. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 494–505. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53465-7_37CrossRefGoogle Scholar
  17. 17.
    Zhao, Z., Guan, Q., Zhao, X., Yu, H., Liu, C.: Universal embedding strategy for batch adaptive steganography in both spatial and JPEG domain. Multimed. Tools Appl. 77, 14093–14113 (2017)CrossRefGoogle Scholar
  18. 18.
    Filler, T., Fridrich, J.: Gibbs construction in steganography. IEEE Trans. Inf. Forensics Secur. 5(4), 705–720 (2010)CrossRefGoogle Scholar
  19. 19.
    Ker, A.D., Pevný, T., Kodovský, J., Fridrich, J.: The square root law of steganographic capacity. In: Proceedings of the 10th ACM Workshop on Multimedia and Security, MM&Sec 2008, pp. 107–116. ACM, New York (2008)Google Scholar
  20. 20.
    Wang, R., Ping, X., Niu, S., Zhang, T.: Segmentation based steganalysis of spatial images using local linear transform. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 533–549. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53465-7_40CrossRefGoogle Scholar
  21. 21.
    Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24178-9_5CrossRefGoogle Scholar
  22. 22.
    Holub, V., Fridrich, J.: Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 10(2), 219–228 (2015)CrossRefGoogle Scholar
  23. 23.
    Song, X., Liu, F., Yang, C., Luo, X., Zhang, Y.: Steganalysis of adaptive JPEG steganography using 2D gabor filters. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, pp. 15–23. ACM (2015)Google Scholar
  24. 24.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xinzhi Yu
    • 1
  • Kejiang Chen
    • 1
  • Weiming Zhang
    • 1
    Email author
  • Yaofei Wang
    • 1
  • Nenghai Yu
    • 1
  1. 1.CAS Key Laboratory of Electromagnetic Space InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations