Advertisement

Pixel-Value-Ordering Based Reversible Data Hiding with Adaptive Texture Classification and Modification

  • Bo OuEmail author
  • Xiaolong Li
  • Wei Li
  • Yun-Qing Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11378)

Abstract

Pixel-value-ordering (PVO) is a new technique for the high-fidelity reversible data hiding (RDH). It contains a process of sorting the pixels of a block by their values at first and then embedding into data bits into the maximum or minimum pixels of a block. In this paper, we propose to modify the pixel blocks differently according to how smooth they are, and embed the adequate number of bits into different types of blocks. The pixel blocks are first classified into five types based on the local complexity. The maximum pixels of the most smooth block will be embedded at most four bits, and the less smooth ones are embedded with a lower number of bits. The block classification is dynamically adjusted to achieve the adaptive embedding with the best trade-off between the capacity and the embedding distortion. Experimental results show that the proposed method can give a better performance over the previous PVO-based methods.

Keywords

Reversible data hiding Block classification Adaptive embedding 

Notes

Acknowledgement

This work was supported by the National Science Foundation of China (No. 61502160), the Hunan Provincial Natural Science Foundation of China under grant No. 2018JJ3078 and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Caldelli, R., Filippini, F., Becarelli, R.: Reversible watermarking techniques: an overview and a classification. EURASIP J. Inf. Secur. 2010, 2 (2010)Google Scholar
  2. 2.
    Li, B., He, J., Huang, J., Shi, Y.Q.: A survey on image steganography and steganalysis. J. Inf. Hiding Multimedia Signal Process. 2(2), 142–172 (2011)Google Scholar
  3. 3.
    Fridrich, J., Goljan, M., Du, R.: Lossless data embedding - new paradigm in digital watermarking. EURASIP J. Appli. Signal Process. 2002(2), 185–196 (2002)zbMATHGoogle Scholar
  4. 4.
    Celik, M.U., Sharma, G., Tekalp, A.M.: Lossless watermarking for image authentication: A new framework and an implementation. IEEE Trans. Image Process. 15(4), 1042–1049 (2006)CrossRefGoogle Scholar
  5. 5.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  6. 6.
    Alattar, A.M.: Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tai, W.L., Yeh, C.M., Chang, C.C.: Reversible data hiding based on histogram modification of pixel differences. IEEE Trans. Circuits Syst. Video Technol. 19(6), 906–910 (2009)CrossRefGoogle Scholar
  8. 8.
    Hu, Y., Lee, H.K., Li, J.: DE-based reversible data hiding with improved overflow location map. IEEE Trans. Circuits Syst. Video Technol. 19(2), 250–260 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, X., Zhang, W., Gui, X., Yang, B.: A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans. Inf. Forens. Secur. 8(7), 1091–1100 (2013)CrossRefGoogle Scholar
  10. 10.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  11. 11.
    Lee, S.K.: Suh, Y.H., Ho, Y.S.: Reversible image authentication based on watermarking. In: IEEE International Conference on Multimedia and Expo, pp. 1321–1324 (2006)Google Scholar
  12. 12.
    Fallahpour, M.: Reversible image data hiding based on gradient adjusted prediction. IEICE Electron. Express 5(20), 870–876 (2008)CrossRefGoogle Scholar
  13. 13.
    Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forens. Secur. 5(1), 187–193 (2010)CrossRefGoogle Scholar
  14. 14.
    Li, Y.C., Yeh, C.M., Chang, C.C.: Data hiding based on the similarity between neighboring pixels with reversibility. Digital Signal Process. 20(4), 1116–1128 (2010)CrossRefGoogle Scholar
  15. 15.
    Wu, H.T., Huang, J.: Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process. 92(12), 3000–3009 (2012)CrossRefGoogle Scholar
  16. 16.
    Tsai, Y.Y., Tsai, D.S., Liu, C.L.: Reversible data hiding scheme based on neighboring pixel differences. Digital Signal Process. 23(3), 919–927 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, X., Li, B., Yang, B., Zeng, T.: General framework to histogram-shifting-based reversible data hiding. IEEE Trans. Image Process. 22(6), 2181–2191 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pan, Z., Hu, S., Ma, X., Wang, L.: Reversible data hiding based on local histogram shifting with multilayer embedding. J. Vis. Commun. Image Represent. 31, 64–74 (2015)CrossRefGoogle Scholar
  19. 19.
    Wu, H.T., Huang, J., Shi, Y.Q.: A reversible data hiding method with contrast enhancement for medical images. J. Vis. Commun. Image Represent. 31, 146–153 (2015)CrossRefGoogle Scholar
  20. 20.
    Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hong, W., Chen, T.S., Shiu, C.W.: Reversible data hiding for high quality images using modification of prediction errors. J. Syst. Softw. 82(11), 1833–1842 (2009)CrossRefGoogle Scholar
  22. 22.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  23. 23.
    Gao, X., An, L., Yuan, Y., Tao, D., Li, X.: Lossless data embedding using generalized statistical quantity histogram. IEEE Trans. Circuits Syst. Video Technol. 21(8), 1061–1070 (2011)CrossRefGoogle Scholar
  24. 24.
    Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Coltuc, D.: Improved embedding for prediction-based reversible watermarking. IEEE Trans. Inf. Forens. Secur. 6(3), 873–882 (2011)CrossRefGoogle Scholar
  26. 26.
    Lin, Y.C.: Reversible data-hiding for progressive image transmission. Signal Process. Image Commun. 26(10), 628–645 (2011)CrossRefGoogle Scholar
  27. 27.
    Hong, W.: Adaptive reversible data hiding method based on error energy control and histogram shifting. Optics Commun. 285(2), 101–108 (2012)CrossRefGoogle Scholar
  28. 28.
    Ou, B., Li, X., Zhao, Y., Ni, R.: Reversible data hiding based on PDE predictor. J. Syst. Softw. 86(10), 2700–2709 (2013)CrossRefGoogle Scholar
  29. 29.
    Coatrieux, G., Pan, W., Cuppens-Boulahia, N., Cuppens, F., Roux, C.: Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans. Inf. Forens. Secur. 8(1), 111–120 (2013)CrossRefGoogle Scholar
  30. 30.
    Qin, C., Chang, C.C., Huang, Y.H., Liao, L.T.: An inpainting-assisted reversible steganographic scheme using histogram shifting mechanism. IEEE Trans. Circuits Syst. Video Techn. 23(7), 1109–1118 (2013)CrossRefGoogle Scholar
  31. 31.
    Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, X., Zhang, W., Gui, X., Yang, B.: Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf. Forens. Secur. 10(9), 2016–2027 (2015)CrossRefGoogle Scholar
  33. 33.
    Coltuc, D., Chassery, J.M.: Very fast watermarking by reversible contrast mapping. IEEE Signal Process. Lett. 14(4), 255–258 (2007)CrossRefGoogle Scholar
  34. 34.
    Wang, X., Li, X., Yang, B., Guo, Z.: Efficient generalized integer transform for reversible watermarking. IEEE Signal Process. Lett. 17(6), 567–570 (2010)CrossRefGoogle Scholar
  35. 35.
    Coltuc, D.: Low distortion transform for reversible watermarking. IEEE Trans. Image Process. 21(1), 412–417 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Li, X., Li, J., Li, B., Yang, B.: High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process. 93(1), 198–205 (2013)CrossRefGoogle Scholar
  37. 37.
    Peng, F., Li, X., Yang, B.: Improved pvo-based reversible data hiding. Digital Signal Process. 25, 255–265 (2014)CrossRefGoogle Scholar
  38. 38.
    Ou, B., Li, X., Zhao, Y., Ni, R.: Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process. Image Commun. 29(7), 760–772 (2014)CrossRefGoogle Scholar
  39. 39.
    Qu, X., Kim, H.J.: Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process. 111, 249–260 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  2. 2.Institute of Information ScienceBeijing Jiaotong UniversityBeijingChina
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  4. 4.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations