Tuning Vibrations with Emotion Controls

  • Hasti SeifiEmail author
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)


When refining or personalizing a design, we count on being able to modify or move an element by changing its parameters rather than creating it anew in a different form or location—a standard utility in graphic and auditory authoring tools. Similarly, in our study of haptic personalization mechanisms in Chap.  3, users preferred the tuning mechanism the most. For tactile vibration display, however, we lack knowledge of the human perceptual mappings which must underlie such tools. Based on evidence that affective dimensions are a natural way to tune vibrations for practical purposes, we attempted to manipulate perception along three emotion dimensions (agitation, liveliness, and strangeness) using engineering parameters of hypothesized relevance. Results from two user studies show that an automatable algorithm can increase a vibration’s perceived agitation and liveliness to different degrees via signal energy, while increasing its discontinuity or randomness makes it more strange. These continuous mappings apply across diverse base vibrations; the extent of achievable emotion change varies. These results illustrate the potential for developing vibrotactile emotion controls as efficient tuning for designers and end-users.


  1. 1.
    Chan, A., MacLean, K., McGrenere, J.: Designing haptic icons to support collaborative turn-taking. Int. J. Hum.-Comput. Stud. (IJHCS) 66(5), 333–355 (2008)CrossRefGoogle Scholar
  2. 2.
    Ryu, J., Chun, J., Park, G., Choi, S., Han, S.H.: Vibrotactile feedback for information delivery in the vehicle. IEEE Trans. Haptics (ToH) 3(2), 138–149 (2010). Scholar
  3. 3.
    Brunet, L., Megard, C., Paneels, S., Changeon, G., Lozada, J., Daniel, M.P., Darses, F.: Invitation to the voyage: The design of tactile metaphors to fulfill occasional travelers’ needs in transportation networks. In: IEEE World Haptics Conference (WHC ’13), pp. 259–264 (2013).
  4. 4.
    Israr, A., Zhao, S., Schwalje, K., Klatzky, R., Lehman, J.: Feel effects: enriching storytelling with haptic feedback. ACM Trans. Appl. Percep. (TAP) 11, 11:1–11:17 (2014)CrossRefGoogle Scholar
  5. 5.
    Schneider, O.S., MacLean, K.E.: Studying design process and example use with macaron, a web-based vibrotactile effect editor. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’16), pp. 52–58 (2016)Google Scholar
  6. 6.
    Tam, D., MacLean, K.E., McGrenere, J., Kuchenbecker, K.J.: The design and field observation of a haptic notification system for timing awareness during oral presentations. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’13), pp. 1689–1698. ACM, New York (2013).
  7. 7.
    Zhao, S., Schneider, O., Klatzky, R., Lehman, J., Israr, A.: Feelcraft: Crafting tactile experiences for media using a feel effect library. In: Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14), pp. 51–52. ACM, New York (2014).
  8. 8.
    Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: An emerging paradigm. In: End User Development, pp. 1–8. Springer, Berlin (2006)Google Scholar
  9. 9.
    Kwak, D.H., Clavio, G.E., Eagleman, A.N., Kim, K.T.: Exploring the antecedents and consequences of personalizing sport video game experiences. Sport Mark. Q. 19(4), 217–225 (2010). Copyright - Copyright Fitness Information Technology, A Division of ICPE West Virginia University Dec 2010; Document feature - Tables; Accessed 06 July 2012
  10. 10.
    Saul, G., Lau, M., Mitani, J., Igarashi, T.: Sketchchair: an all-in-one chair design system for end users. In: Proceedings of the Fifth ACM International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’11), pp. 73–80 (2011)Google Scholar
  11. 11.
    Seifi, H., Anthonypillai, C., MacLean, K.E.: End-user customization of affective tactile messages: A qualitative examination of tool parameters. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’14), pp. 251–256. IEEE (2014)Google Scholar
  12. 12.
    Seifi, H., Zhang, K., MacLean, K.E.: Vibviz: Organizing, visualizing and navigating vibration libraries. In: Proceedings of IEEE World Haptics Conference (WHC ’15), pp. 254–259. IEEE (2015)Google Scholar
  13. 13.
    Adobe Systems, Inc.: Adobe photoshop. Accessed 23 Oct 2016
  14. 14.
    Evening, M.: The Adobe Photoshop Lightroom 5 Book: The Complete Guide for Photographers. Pearson Education, London (2013)Google Scholar
  15. 15.
    Facebook, Inc.: Instagram. Accessed 21 Oct 2016
  16. 16.
    Paterson, M.: The Senses of Touch: Haptics, Affects and Technologies. Berg (2007)Google Scholar
  17. 17.
    McGlone, F., Vallbo, A.B., Olausson, H., Loken, L., Wessberg, J.: Discriminative touch and emotional touch. Can. J. Exp. Psychol. 61(3), 173 (2007)CrossRefGoogle Scholar
  18. 18.
    Hertenstein, M.J., Weiss, S.J.: The Handbook of Touch: Neuroscience, Behavioral, and Health Perspectives. Springer Publishing Company, Berlin (2011)Google Scholar
  19. 19.
    Seifi, H., MacLean, K.E.: Exploiting haptic facets: users’ sensemaking schemas as a path to design and personalization of experience. In: Submitted to International Journal of Human Computer Studies (IJHCS), Special issue on Multisensory HCI (2017)CrossRefGoogle Scholar
  20. 20.
    Engineering Acoustics, Inc.: C2 tactor. Accessed 21 Mar 2017
  21. 21.
    MacLean, K.E., Schneider, O., Seifi, H.: Multisensory haptic interactions: understanding the sense and designing for it. In: The Handbook of Multimodal-Multisensor Interfaces. ACM Books (2017)Google Scholar
  22. 22.
    Blom, J.O., Monk, A.F.: Theory of personalization of appearance: Why users personalize their pcs and mobile phones. J. Hum.-Comput. Interact. 18(3), 193–228 (2003). Scholar
  23. 23.
    McGrenere, J., Baecker, R.M., Booth, K.S.: A field evaluation of an adaptable two-interface design for feature-rich software. ACM Trans. Comput.-Hum. Interact. (TOCHI) 14(1), 3 (2007). Scholar
  24. 24.
    Mackay, W.E.: Triggers and barriers to customizing software. In: Proceedings of ACM SIGCHI conference on Human Factors in Computing Systems (CHI ’91), pp. 153–160 (1991).
  25. 25.
    Marathe, S., Sundar, S.S.: What drives customization?: Control or identity? In: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’11), pp. 781–790 (2011).
  26. 26.
    Oh, U., Findlater, L.: The challenges and potential of end-user gesture customization. In: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’13), pp. 1129–1138 (2013).
  27. 27.
    Nurkka, P.: “Nobody other than me knows what i Want”: customizing a sports watch. In: Kotz, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) Proceedings of Human-Computer Interaction (INTERACT ’13), vol. no. 8120 in Lecture Notes in Computer Science, pp. 384–402. Springer, Berlin, (2013). Scholar
  28. 28.
    Schneider, O.S., Israr, A., MacLean, K.E.: Tactile animation by direct manipulation of grid displays. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (UIST ’15), pp. 21–30. ACM (2015)Google Scholar
  29. 29.
    Lee, J., Ryu, J., Choi, S.: Vibrotactile score: A score metaphor for designing vibrotactile patterns. In: Proceedings of IEEE World Haptics (WHC ’09), pp. 302–307 (2009).
  30. 30.
    Google, Inc.: Google Play Music. Accessed 21 Oct 2016
  31. 31.
    Musicovery: Musicovery. Accessed 21 Oct 2016
  32. 32.
    MoodFuse: Moodfuse. Accessed 21 Oct 2016
  33. 33.
    Nik Software: Snapseed, on Google Play Store. Accessed 21 Oct 2016
  34. 34.
    Propellerhead Software: Figure, on Google Play Store. Accessed 21 Oct 2016
  35. 35.
    van Erp, J.B., Spapé, M.M.: Distilling the underlying dimensions of tactile melodies. Proc. Eurohaptics Conf. 2003, 111–120 (2003)Google Scholar
  36. 36.
    Hoggan, E., Brewster, S.: Designing audio and tactile crossmodal icons for mobile devices. In: Proceedings of the 9th ACM International Conference on Multimodal Interfaces (ICMI ’07), pp. 162–169. ACM (2007)Google Scholar
  37. 37.
    Brown, L.M., Brewster, S.A., Purchase, H.C.: Tactile crescendos and sforzandos: applying musical techniques to tactile icon design. In: CHI’06 Extended Abstracts on Human factors in Computing Systems (CHI EA ’06), pp. 610–615. ACM (2006)Google Scholar
  38. 38.
    Mazzoni, D., Dannenberg, R.: Audacity Software. Accessed 24 Jan 2015
  39. 39.
    SoundTouch: Soundtouch Algorithm (2016). Accessed 24 Sept 2016
  40. 40.
    Koskinen, E., Kaaresoja, T., Laitinen, P.: Feel-good touch: Finding the most pleasant tactile feedback for a mobile touch screen button. In: Proceedings of the 10th International Conference on Multimodal Interfaces (ICMI ’08), pp. 297–304. ACM, New York (2008).
  41. 41.
    Zheng, Y., Morrell, J.B.: Haptic actuator design parameters that influence affect and attention. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’12), pp. 463–470. IEEE (2012)Google Scholar
  42. 42.
    Schneider, O.S., MacLean, K.E.: Improvising design with a haptic instrument. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’14), pp. 327–332. IEEE (2014)Google Scholar
  43. 43.
    Yoo, Y., Yoo, T., Kong, J., Choi, S.: Emotional responses of tactile icons: Effects of amplitude, frequency, duration, and envelope. In: Proceedings of IEEE World Haptics Conference (WHC’15), pp. 235–240 (2015).
  44. 44.
    O’Sullivan, C., Chang, A.: An Activity Classification for Vibrotactile Phenomena, pp. 145–156. Springer, Berlin (2006). Scholar
  45. 45.
    Schneider, O.S., Seifi, H., Kashani, S., Chun, M., MacLean, K.E.: Hapturk: crowdsourcing affective ratings of vibrotactile icons. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’16), pp. 3248–3260 (2016)Google Scholar
  46. 46.
    Ternes, D., Maclean, K.E.: Designing large sets of haptic icons with rhythm. In: Haptics: Perception, Devices and Scenarios, pp. 199–208. Springer, Berlin (2008)Google Scholar
  47. 47.
    Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J.: The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11), pp. 143–146. ACM (2011)Google Scholar
  48. 48.
    Conover, W.J., Iman, R.L.: Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 35(3), 124–129 (1981). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations