Advertisement

Deriving Semantics and Interlinkages of Facets

  • Hasti SeifiEmail author
Chapter
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)

Abstract

Haptic facets (categories of attributes that characterize collection items in different ways) are a way to describe, navigate and analyze the cognitive frameworks by which users make sense of qualitative and affective characteristics of haptic sensations. Embedded in tools, they will provide designers and end-users interested in customization with a road-mapped perceptual and cognitive design space. In the previous chapter, we compiled five haptic facets based on how people describe vibrations: physical, sensory, emotional, metaphoric, and usage examples. Here, we report a study in which we deployed these facets to identify underlying dimensions and cross-linkages in participants’ perception of a 120-item vibration library. We found that the facets are crosslinked in people’s minds, and discuss three scenarios where the facet-based organizational schemes, their linkages and consequent redundancies can support design, evaluation and personalization of expressive vibrotactile effects. Furthermore, we report between-subject variation (individual differences) and within-subject consistency (reliability) in participants’ rating and tagging patterns to inform future progress on haptic evaluation. This facet-based approach is also applicable to other kinds of haptic sensations. Finally, we detail our novel methodology for collecting user annotations for a large haptic collection in the lab.

References

  1. 1.
    MacLean, K.E., Schneider, O., Seifi, H.: Multisensory haptic interactions: understanding the sense and designing for it. In: The Handbook of Multimodal-Multisensor Interfaces. ACM Books (2017)Google Scholar
  2. 2.
    Lo, J., Johansson, R.S., et al.: Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Res. 301(1), 65–72 (1984)CrossRefGoogle Scholar
  3. 3.
    Hollins, M., Bensmaïa, S., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: evidence from multidimensional scaling. Percept. Psychophys. 62(8), 1534–1544 (2000)CrossRefGoogle Scholar
  4. 4.
    Peck, J., Childers, T.L.: Individual differences in haptic information processing: the need for touch scale. J. Consum. Res. 30(3), 430–442 (2003)CrossRefGoogle Scholar
  5. 5.
    Levesque, V., Oram, L., MacLean, K.E.: Exploring the design space of programmable friction for scrolling interactions. In: Proceedings of IEEE Haptic Symposium (HAPTICS ’12), pp. 23–30 (2012)Google Scholar
  6. 6.
    Chan, A., MacLean, K., McGrenere, J.: Designing haptic icons to support collaborative turn-taking. Int. J. Hum.-Comput. Stud. (IJHCS) 66(5), 333–355 (2008)CrossRefGoogle Scholar
  7. 7.
    Tam, D., MacLean, K.E., McGrenere, J., Kuchenbecker, K.J.: The design and field observation of a haptic notification system for timing awareness during oral presentations. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’13), pp. 1689–1698. ACM, New York (2013).  https://doi.org/10.1145/2470654.2466223
  8. 8.
    Zhao, S., Schneider, O., Klatzky, R., Lehman, J., Israr, A.: Feelcraft: crafting tactile experiences for media using a feel effect library. In: Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14), pp. 51–52. ACM, New York (2014).  https://doi.org/10.1145/2658779.2659109
  9. 9.
    Swindells, C., Pietarinen, S., Viitanen, A.: Medium fidelity rapid prototyping of vibrotactile haptic, audio and video effects. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’14), pp. 515–521 (2014)Google Scholar
  10. 10.
    Israr, A., Zhao, S., Schwalje, K., Klatzky, R., Lehman, J.: Feel effects: Enriching storytelling with haptic feedback. ACM Trans. Appl. Percept. (TAP) 11, 11:1–11:17 (2014)CrossRefGoogle Scholar
  11. 11.
    Obrist, M., Seah, S.A., Subramanian, S.: Talking about tactile experiences. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’13), pp. 1659–1668. ACM (2013)Google Scholar
  12. 12.
    Schneider, O.S., MacLean, K.E.: Improvising design with a haptic instrument. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’14), pp. 327–332. IEEE (2014)Google Scholar
  13. 13.
    Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and browsing. In: Proceedings of the ACM SIGCHI conference on Human Factors in Computing Systems (CHI ’03), pp. 401–408 (2003)Google Scholar
  14. 14.
    Smith, G., Czerwinski, M., Meyers, B., Robbins, D., Robertson, G., Tan, D.S.: Facetmap: a scalable search and browse visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 797–804 (2006)CrossRefGoogle Scholar
  15. 15.
    Hearst, M.: Design recommendations for hierarchical faceted search interfaces. In: Proceedings of the ACM SIGIR Workshop on Faceted Search, pp. 1–5 (2006)Google Scholar
  16. 16.
    Hearst, M.A.: UIs for faceted navigation: Recent advances and remaining open problems. In: Proceedings of the Second Workshop on Human-Computer Interaction and Information Retrieval (HCIR), pp. 13–17 (2008)Google Scholar
  17. 17.
    Fagan, J.C.: Usability studies of faceted browsing: a literature review. Inf. Technol. Libr. 29(2), 58 (2010)Google Scholar
  18. 18.
    Ternes, D.R.: Building large sets of haptic icons: Rhythm as a design parameter, and between-subjects mds for evaluation. Ph.D. thesis, The University of British Columbia (2007)Google Scholar
  19. 19.
    Seifi, H., Zhang, K., MacLean, K.E.: Vibviz: organizing, visualizing and navigating vibration libraries. In: Proceedings of IEEE World Haptics Conference (WHC ’15), pp. 254–259. IEEE (2015)Google Scholar
  20. 20.
    Ternes, D., Maclean, K.E.: Designing large sets of haptic icons with rhythm. In: Haptics: Perception, Devices and Scenarios, pp. 199–208. Springer, Berlin (2008)Google Scholar
  21. 21.
    Guest, S., Dessirier, J.M., Mehrabyan, A., McGlone, F., Essick, G., Gescheider, G., Fontana, A., Xiong, R., Ackerley, R., Blot, K.: The development and validation of sensory and emotional scales of touch perception. Atten. Percept. Psychophys. 73(2), 531–550 (2011)CrossRefGoogle Scholar
  22. 22.
    The NounProject, Inc.: (2016). http://thenounproject.com/. Accessed 24 July 2016
  23. 23.
    Turnbull, D., Barrington, L., Lanckriet, G.R.: Five approaches to collecting tags for music. Proc. Int. Soc. Music Inf. Retr. (ISMIR) 8, 225–230 (2008)Google Scholar
  24. 24.
    Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)CrossRefGoogle Scholar
  25. 25.
    Thompson, B.: Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association (2004)Google Scholar
  26. 26.
    Seifi, H., MacLean, K.E.: VibViz Dataset (2016). http://www.cs.ubc.ca/labs/spin/vibviz. Accessed 29 July 2016
  27. 27.
    Brunet, L., Megard, C., Paneels, S., Changeon, G., Lozada, J., Daniel, M.P., Darses, F.: Invitation to the voyage: The design of tactile metaphors to fulfill occasional travelers’ needs in transportation networks. In: IEEE World Haptics Conference (WHC ’13), pp. 259–264 (2013).  https://doi.org/10.1109/WHC.2013.6548418
  28. 28.
    Zheng, Y., Su, E., Morrell, J.B.: Design and evaluation of pactors for managing attention capture. In: Proceedings of IEEE World Haptics Conference (WHC ’13), pp. 497–502 (2013)Google Scholar
  29. 29.
    Ryu, J., Choi, S.: posVibEditor: Graphical authoring tool of vibrotactile patterns. In: Proceedings of IEEE International Workshop on Haptic Audio visual Environments and Games (HAVE), pp. 120–125 (2008)Google Scholar
  30. 30.
    Schneider, O.S., MacLean, K.E.: Studying design process and example use with macaron, a web-based vibrotactile effect editor. In: Proceedings of IEEE Haptics Symposium (HAPTICS ’16), pp. 52–58 (2016)Google Scholar
  31. 31.
    Hong, K., Lee, J., Choi, S.: Demonstration-based vibrotactile pattern authoring. In: Proceedings of the Seventh International Conference on Tangible, Embedded and Embodied Interaction (TEI ’13), pp. 219–222 (2013)Google Scholar
  32. 32.
    Schneider, O.S., Israr, A., MacLean, K.E.: Tactile animation by direct manipulation of grid displays. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (UIST ’15), pp. 21–30. ACM (2015)Google Scholar
  33. 33.
    Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: An emerging paradigm. In: End User Development, pp. 1–8. Springer, Berlin (2006)Google Scholar
  34. 34.
    Saul, G., Lau, M., Mitani, J., Igarashi, T.: Sketchchair: an all-in-one chair design system for end users. In: Proceedings of the Fifth ACM International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’11), pp. 73–80 (2011)Google Scholar
  35. 35.
    Evening, M.: The Adobe Photoshop Lightroom 5 Book: The Complete Guide for Photographers. Pearson Education, London (2013)Google Scholar
  36. 36.
    Harrower, M., Brewer, C.A.: Colorbrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. (2013)Google Scholar
  37. 37.
    van Erp, J.B., Spapé, M.M.: Distilling the underlying dimensions of tactile melodies. Proc. Eurohaptics Conf. 2003, 111–120 (2003)Google Scholar
  38. 38.
    MacLean, K., Enriquez, M.: Perceptual design of haptic icons. In: Proceedings of EuroHaptics Conference, pp. 351–363 (2003)Google Scholar
  39. 39.
    Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics (ToH) 6(1), 81–93 (2013)CrossRefGoogle Scholar
  40. 40.
    Doizaki, R., Watanabe, J., Sakamoto, M.: A system for evaluating tactile feelings expressed by sound symbolic words. In: Auvray, M., Duriez, C. (eds.) Haptics: Neuroscience, Devices, Modeling, and Applications: Proceedings of Eurohaptics, pp. 32–39. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-662-44193-0_5Google Scholar
  41. 41.
    Brown, L.M., Brewster, S.A., Purchase, H.C.: Tactile crescendos and sforzandos: applying musical techniques to tactile icon design. In: CHI’06 Extended Abstracts on Human factors in Computing Systems (CHI EA ’06), pp. 610–615. ACM (2006)Google Scholar
  42. 42.
    Hoggan, E., Brewster, S.: Designing audio and tactile crossmodal icons for mobile devices. In: Proceedings of the 9th ACM International Conference on Multimodal Interfaces (ICMI ’07), pp. 162–169. ACM (2007)Google Scholar
  43. 43.
    Grey, J.M.: Multidimensional perceptual scaling of musical timbres. J. Acous. Soc. Am. 61(5), 1270–1277 (1977)CrossRefGoogle Scholar
  44. 44.
    Pandora Internet Radio: Pandora (2016). http://www.pandora.com/. Accessed 24 July 2016
  45. 45.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Proceedings of European Conference on Principles of Data Mining and Knowledge Discovery, pp. 506–514. Springer, Berlin (2007)Google Scholar
  46. 46.
    Last.fm: (2016). http://www.last.fm/music. Accessed 24 July 2016
  47. 47.
    The MathWorks, Inc.: Matlab (2016). https://www.mathworks.com/products/matlab.html. Accessed 29 July 2016
  48. 48.
    Yong, A.G., Pearce, S.: A beginner’s guide to factor analysis: focusing on exploratory factor analysis. Tutor. Quant. Methods Psychol. 9(2), 79–94 (2013)CrossRefGoogle Scholar
  49. 49.
    Jason L. Huang Paul G. Curran, J.K.E.M.P.R.P.D.: Detecting and deterring insufficient effort responding to surveys. J. Bus. Psychol. 27(1), 99–114 (2012). http://www.jstor.org/stable/41474909
  50. 50.
    Curran, P.G.: Methods for the detection of carelessly invalid responses in survey data. J. Exp. Soc. Psychol. 66, 4–19 (2016).  https://doi.org/10.1016/j.jesp.2015.07.006. http://www.sciencedirect.com/science/article/pii/S0022103115000931. Rigorous and Replicable Methods in Social PsychologyCrossRefGoogle Scholar
  51. 51.
    MacLean, K.E.: Foundations of transparency in tactile information design. IEEE Trans. Haptics (ToH) 1(2), 84–95 (2008)CrossRefGoogle Scholar
  52. 52.
    Hoggan, E., Brewster, S.: New parameters for tacton design. In: CHI’07 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’07), pp. 2417–2422. ACM, New York (2007)Google Scholar
  53. 53.
    TactileLabs: (2016). http://tactilelabs.com/. Accessed 29 July 2016
  54. 54.
    Yoo, Y., Yoo, T., Kong, J., Choi, S.: Emotional responses of tactile icons: Effects of amplitude, frequency, duration, and envelope. In: Proceedings of IEEE World Haptics Conference (WHC’15), pp. 235–240 (2015).  https://doi.org/10.1109/WHC.2015.7177719
  55. 55.
    Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI ’90), pp. 249–256 (1990)Google Scholar
  56. 56.
    Yohanan, S., MacLean, K.E.: Design and assessment of the haptic creature’s affect display. In: Proceedings of the Sixth ACM International Conference on Human-Robot Interaction (HRI ’11), pp. 473–480 (2011)Google Scholar
  57. 57.
    Yohanan, S., Chan, M., Hopkins, J., Sun, H., MacLean, K.: Hapticat: exploration of affective touch. In: Proceedings of the Seventh ACM International Conference on Multimodal Interfaces (ICMI), pp. 222–229 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations