Advertisement

Estrogenic Regulation of Neuroprotective and Neuroinflammatory Mechanisms: Implications for Depression and Cognition

  • Natalia Yanguas-Casás
  • Maria Elvira Brocca
  • Iñigo Azcoitia
  • Maria Angeles Arevalo
  • Luis M. Garcia-SeguraEmail author
Chapter
Part of the ISGE Series book series (ISGE)

Abstract

Glial cells, such as astrocytes and microglia, contribute to maintain tissue homeostasis in the brain and are involved in the control of neuronal function, synaptic plasticity, and neuroinflammation. In the aged brain and under neurodegenerative conditions, microglial cells acquire a senescent reactive phenotype, which involves a dysregulated inflammatory response that affects the normal function and metabolism of neurons and other cell types, including astrocytes. The impaired function of astrocytes and microglia in the aged brain increases neuroinflammation, which is associated with depressive disorders and cognitive deficits. Estradiol, from gonadal origin or locally produced in the brain, exerts anti-inflammatory actions in the central nervous system, regulating the reactive phenotype of astrocytes and microglia. In addition, estrogen receptor signaling exerts direct neuroprotective actions on neurons and interacts with the signaling of other neuroprotective and anti-inflammatory factors in the brain. These actions of estradiol and estrogen receptors contribute to maintain a proper neuronal information processing, promoting cognitive function and preventing affective disorders. The effects of estradiol are imitated by synthetic estrogenic compounds, such as some selective estrogen receptor modulators and tibolone.

Keywords

Aromatase Astrocytes BDNF Estrogen receptors IGF-1 Microglia Neuroglobin SERMs Tibolone Wnt signaling 

Notes

Acknowledgments

Authors acknowledge the support from Ministerio de Economía, Industria y Competitividad (MINECO), Spain (grant number BFU2017-82754-R); Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III, Madrid, Spain; and Fondos FEDER.

References

  1. 1.
    Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol. 2016;144:5–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Arevalo MA, Azcoitia I, Gonzalez-Burgos I, Garcia-Segura LM. Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm Behav. 2015;74:19–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Frankfurt M, Luine V. The evolving role of dendritic spines and memory: interaction(s) with estradiol. Horm Behav. 2015;74:28–36.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol. 2014;35(1):8–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM. Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab. 2011;22(12):467–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev. 2016;37(4):372–402.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Barrientos RM, Frank MG, Watkins LR, Maier SF. Aging-related changes in neuroimmune-endocrine function: implications for hippocampal-dependent cognition. Horm Behav. 2012;62(3):219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation. 2008;15(4–6):323–30.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(Suppl 2):136–53.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124.Google Scholar
  11. 11.
    Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacology. 2017;42(1):318–33.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Belanger M, Magistretti PJ. The role of astroglia in neuroprotection. Dialogues Clin Neurosci. 2009;11(3):281–95.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2016;136(Suppl 1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta. 2016;1862(3):483–91.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kaltschmidt B, Kaltschmidt C. NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol. 2009;1(3):a001271.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    von Bernhardi R, Tichauer JE, Eugenin J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem. 2010;112(5):1099–114.CrossRefGoogle Scholar
  17. 17.
    Blaylock RL. Parkinson’s disease: microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int. 2017;8:65.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Alam Q, Alam MZ, Mushtaq G, Damanhouri GA, Rasool M, Kamal MA, et al. Inflammatory process in Alzheimer’s and Parkinson’s diseases: central role of cytokines. Curr Pharm Des. 2016;22(5):541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016;13(4):3391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Andreotti C, King AA, Macy E, Compas BE, DeBaun MR. The association of cytokine levels with cognitive function in children with sickle cell disease and normal MRI studies of the brain. J Child Neurol. 2015;30(10):1349–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Ganz PA, Bower JE, Kwan L, Castellon SA, Silverman DH, Geist C, et al. Does tumor necrosis factor-alpha (TNF-alpha) play a role in post-chemotherapy cerebral dysfunction? Brain Behav Immun. 2013;30(Suppl):S99–108.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cvejic E, Lemon J, Hickie IB, Lloyd AR, Vollmer-Conna U. Neurocognitive disturbances associated with acute infectious mononucleosis, Ross River fever and Q fever: a preliminary investigation of inflammatory and genetic correlates. Brain Behav Immun. 2014;36:207–14.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Yuan L, Liu A, Qiao L, Sheng B, Xu M, Li W, et al. The relationship of CSF and plasma cytokine levels in HIV infected patients with neurocognitive impairment. Biomed Res Int. 2015;2015:506872.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, et al. Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev. 2018;84:116–33.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.CrossRefGoogle Scholar
  27. 27.
    Roomruangwong C, Anderson G, Berk M, Stoyanov D, Carvalho AF, Maes M. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:262–74.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jha MK, Trivedi MH. Personalized antidepressant selection and pathway to novel treatments: clinical utility of targeting inflammation. Int J Mol Sci. 2018;19(1). pii: E233.Google Scholar
  29. 29.
    Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Shariq AS, Brietzke E, Rosenblat JD, Barendra V, Pan Z, McIntyre RS. Targeting cytokines in reduction of depressive symptoms: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:86–91.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Barrientos RM, Higgins EA, Biedenkapp JC, Sprunger DB, Wright-Hardesty KJ, Watkins LR, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging. 2006;27(5):723–32.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, Olschowka JA, et al. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun. 2010;24(2):243–53.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF. Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res. 2002;134(1–2):291–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J Neuroimmunol. 2004;147(1–2):141–4.CrossRefGoogle Scholar
  35. 35.
    Pei B, Sun J. Pinocembrin alleviates cognition deficits by inhibiting inflammation in diabetic mice. J Neuroimmunol. 2018;314:42–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Vagnozzi AN, Giannopoulos PF, Pratico D. The direct role of 5-lipoxygenase on tau pathology, synaptic integrity and cognition in a mouse model of tauopathy. Transl Psychiatry. 2017;7(12):1288.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Au A, Feher A, McPhee L, Jessa A, Oh S, Einstein G. Estrogens, inflammation and cognition. Front Neuroendocrinol. 2016;40:87–100.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wang HT, Huang FL, Hu ZL, Zhang WJ, Qiao XQ, Huang YQ, et al. Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox Res. 2017;31(4):505–20.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Vereker E, O’Donnell E, Lynch MA. The inhibitory effect of interleukin-1beta on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J Neurosci. 2000;20(18):6811–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Vereker E, Campbell V, Roche E, McEntee E, Lynch MA. Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem. 2000;275(34):26252–8.CrossRefGoogle Scholar
  41. 41.
    Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp Neurol. 2002;176(2):336–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Tancredi V, D’Antuono M, Cafe C, Giovedi S, Bue MC, D’Arcangelo G, et al. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J Neurochem. 2000;75(2):634–43.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cumiskey D, Curran BP, Herron CE, O’Connor JJ. A role for inflammatory mediators in the IL-18 mediated attenuation of LTP in the rat dentate gyrus. Neuropharmacology. 2007;52(8):1616–23.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lynch MA. Neuroinflammatory changes negatively impact on LTP: a focus on IL-1beta. Brain Res. 2015;1621:197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhang XL, Wang L, Xiong L, Huang FH, Xue H. Timosaponin B-III exhibits antidepressive activity in a mouse model of postpartum depression by the regulation of inflammatory cytokines, BNDF signaling and synaptic plasticity. Exp Ther Med. 2017;14(4):3856–61.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17(8):497–511.CrossRefGoogle Scholar
  47. 47.
    Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci. 2015;35(12):4942–52.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Barrientos RM, Frank MG, Crysdale NY, Chapman TR, Ahrendsen JT, Day HE, et al. Little exercise, big effects: reversing aging and infection-induced memory deficits, and underlying processes. J Neurosci. 2011;31(32):11578–86.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gatson JW, Maass DL, Simpkins JW, Idris AH, Minei JP, Wigginton JG. Estrogen treatment following severe burn injury reduces brain inflammation and apoptotic signaling. J Neuroinflammation. 2009;6:30.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol. 2013;137:71–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Razmara A, Sunday L, Stirone C, Wang XB, Krause DN, Duckles SP, et al. Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J Pharmacol Exp Ther. 2008;325(3):782–90.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DH, Reutelingsperger CP, et al. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun. 2016;51:212–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Arevalo MA, Ruiz-Palmero I, Scerbo MJ, Acaz-Fonseca E, Cambiasso MJ, Garcia-Segura LM. Molecular mechanisms involved in the regulation of neuritogenesis by estradiol: recent advances. J Steroid Biochem Mol Biol. 2012;131(1–2):52–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol. 2015;36:72–89.PubMedCrossRefGoogle Scholar
  55. 55.
    Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17beta-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol. 2014;389(1–2):48–57.PubMedCrossRefGoogle Scholar
  56. 56.
    Arevalo MA, Santos-Galindo M, Bellini MJ, Azcoitia I, Garcia-Segura LM. Actions of estrogens on glial cells: implications for neuroprotection. Biochim Biophys Acta. 2010;1800(10):1106–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Toran-Allerand CD. Minireview: A plethora of estrogen receptors in the brain: where will it end? Endocrinology. 2004;145(3):1069–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Nilsson S, Gustafsson JA. Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther. 2011;89(1):44–55.PubMedCrossRefGoogle Scholar
  59. 59.
    Tang H, Zhang Q, Yang L, Dong Y, Khan M, Yang F, et al. Reprint of “GPR30 mediates estrogen rapid signaling and neuroprotection”. Mol Cell Endocrinol. 2014;389(1–2):92–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16(1):17–29.PubMedCrossRefGoogle Scholar
  61. 61.
    De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, et al. 17beta-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor beta-mediated neuroglobin up-regulation. J Neuroendocrinol. 2013;25(3):260–70.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    De Marinis E, Ascenzi P, Pellegrini M, Galluzzo P, Bulzomi P, Arevalo MA, et al. 17beta-estradiol--a new modulator of neuroglobin levels in neurons: role in neuroprotection against H(2)O(2)-induced toxicity. Neurosignals. 2010;18(4):223–35.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    De Marinis E, Marino M, Ascenzi P. Neuroglobin, estrogens, and neuroprotection. IUBMB Life. 2011;63(3):140–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nuzzo MT, Fiocchetti M, Totta P, Melone MAB, Cardinale A, Fusco FR, et al. Huntingtin polyQ mutation impairs the 17beta-estradiol/neuroglobin pathway devoted to neuron survival. Mol Neurobiol. 2017;54(8):6634–46.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Pietranera L, Brocca ME, Roig P, Lima A, Garcia-Segura LM, De Nicola AF. Estrogens are neuroprotective factors for hypertensive encephalopathy. J Steroid Biochem Mol Biol. 2015;146:15–25.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Harte-Hargrove LC, Maclusky NJ, Scharfman HE. Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience. 2013;239:46–66.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Srivastava DP, Woolfrey KM, Evans PD. Mechanisms underlying the interactions between rapid estrogenic and BDNF control of synaptic connectivity. Neuroscience. 2013;239:17–33.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Luine V, Frankfurt M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience. 2013;239:34–45.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Alkadhi KA. Exercise as a positive modulator of brain function. Mol Neurobiol. 2018;55(4):3112–30.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther. 2014;141(1):1–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Datusalia AK, Sharma SS. Amelioration of diabetes-induced cognitive deficits by GSK-3beta inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Mol Neurobiol. 2014;50(2):390–405.PubMedCrossRefGoogle Scholar
  72. 72.
    Venna VR, Benashski SE, Chauhan A, McCullough LD. Inhibition of glycogen synthase kinase-3beta enhances cognitive recovery after stroke: the role of TAK1. Learn Mem. 2015;22(7):336–43.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pardo M, Abrial E, Jope RS, Beurel E. GSK3beta isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes Brain Behav. 2016;15(3):348–55.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Reshma MV, Saritha SS, Balachandran C, Arumughan C. Lipase catalyzed interesterification of palm stearin and rice bran oil blends for preparation of zero trans shortening with bioactive phytochemicals. Bioresour Technol. 2008;99(11):5011–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Garcia-Segura LM, Arevalo MA, Azcoitia I. Interactions of estradiol and insulin-like growth factor-I signalling in the nervous system: new advances. Prog Brain Res. 2010;181:251–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol. 2015;36:1–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Grissom EM, Daniel JM. Evidence for ligand-independent activation of hippocampal estrogen receptor-alpha by IGF-1 in hippocampus of ovariectomized rats. Endocrinology. 2016;157(8):3149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cardona-Gomez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Brain Res Rev. 2001;37(1–3):320–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21(5):1628–34.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Barreto G, Santos-Galindo M, Diz-Chaves Y, Pernia O, Carrero P, Azcoitia I, et al. Selective estrogen receptor modulators decrease reactive astrogliosis in the injured brain: effects of aging and prolonged depletion of ovarian hormones. Endocrinology. 2009;150(11):5010–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Arevalo MA, Santos-Galindo M, Lagunas N, Azcoitia I, Garcia-Segura LM. Selective estrogen receptor modulators as brain therapeutic agents. J Mol Endocrinol. 2011;46(1):R1–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol. 2012;24(1):183–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Li R, Xu W, Chen Y, Qiu W, Shu Y, Wu A, et al. Raloxifene suppresses experimental autoimmune encephalomyelitis and NF-kappaB-dependent CCL20 expression in reactive astrocytes. PLoS One. 2014;9(4):e94320.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Barreto GE, Santos-Galindo M, Garcia-Segura LM. Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury. Front Aging Neurosci. 2014;6:132.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Bourque M, Morissette M, Di Paolo T. Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Neurobiol Aging. 2014;35(10):2347–56.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang X, Zhao L, Zhang Y, Ma W, Gonzalez SR, Fan J, et al. Tamoxifen provides structural and functional rescue in murine models of photoreceptor degeneration. J Neurosci. 2017;37(12):3294–310.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jover-Mengual T, Castello-Ruiz M, Burguete MC, Jorques M, Lopez-Morales MA, Aliena-Valero A, et al. Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: a comparative study with 17beta-estradiol. J Steroid Biochem Mol Biol. 2017;171:296–304.PubMedCrossRefGoogle Scholar
  88. 88.
    Rzemieniec J, Litwa E, Wnuk A, Lason W, Kajta M. Bazedoxifene and raloxifene protect neocortical neurons undergoing hypoxia via targeting ERalpha and PPAR-gamma. Mol Cell Endocrinol. 2018;461:64–78.PubMedCrossRefGoogle Scholar
  89. 89.
    Colon JM, Gonzalez PA, Cajigas A, Maldonado WI, Torrado AI, Santiago JM, et al. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp Neurol. 2018;299(Pt A):109–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Gonzalez-Burgos I, Rivera-Cervantes MC, Velazquez-Zamora DA, Feria-Velasco A, Garcia-Segura LM. Selective estrogen receptor modulators regulate dendritic spine plasticity in the hippocampus of male rats. Neural Plast. 2012;2012:309494.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Velazquez-Zamora DA, Garcia-Segura LM, Gonzalez-Burgos I. Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm Behav. 2012;61(4):512–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Pandey D, Banerjee S, Basu M, Mishra N. Memory enhancement by Tamoxifen on amyloidosis mouse model. Horm Behav. 2016;79:70–3.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Calmarza-Font I, Lagunas N, Garcia-Segura LM. Antidepressive and anxiolytic activity of selective estrogen receptor modulators in ovariectomized mice submitted to chronic unpredictable stress. Behav Brain Res. 2012;227(1):287–90.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Genazzani AR, Pluchino N, Bernardi F, Centofanti M, Luisi M. Beneficial effect of tibolone on mood, cognition, well-being, and sexuality in menopausal women. Neuropsychiatr Dis Treat. 2006;2(3):299–307.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gulseren L, Kalafat D, Mandaci H, Gulseren S, Camli L. Effects of tibolone on the quality of life, anxiety-depression levels and cognitive functions in natural menopause: an observational follow-up study. Aust N Z J Obstet Gynaecol. 2005;45(1):71–3.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Pinto-Almazan R, Segura-Uribe JJ, Farfan-Garcia ED, Guerra-Araiza C. Effects of Tibolone on the central nervous system: clinical and experimental approaches. Biomed Res Int. 2017;2017:8630764.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, et al. Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol. 2014;144(Pt B):294–303.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35–46.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Genazzani AR, Bernardi F, Pluchino N, Giretti MS, Begliuomini S, Casarosa E, et al. Effect of tibolone administration on central and peripheral levels of allopregnanolone and beta-endorphin in female rats. Menopause. 2006;13(1):57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Genazzani AR, Petraglia F, Facchinetti F, Grasso A, Alessandrini G, Volpe A. Steroid replacement treatment increases beta-endorphin and beta-lipotropin plasma levels in postmenopausal women. Gynecol Obstet Investig. 1988;26(2):153–9.CrossRefGoogle Scholar
  101. 101.
    Gibbs RB, Nelson D, Anthony MS, Clarkson TB. Effects of long-term hormone replacement and of tibolone on choline acetyltransferase and acetylcholinesterase activities in the brains of ovariectomized, cynomologus monkeys. Neuroscience. 2002;113(4):907–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Beltran-Campos V, Diaz-Ruiz A, Padilla-Gomez E, Aguilar Zavala H, Rios C, Diaz Cintra S. Effect of tibolone on dendritic spine density in the rat hippocampus. Neurologia. 2015;30(7):401–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Azcoitia I, Yague JG, Garcia-Segura LM. Estradiol synthesis within the human brain. Neuroscience. 2011;191:139–47.PubMedCrossRefGoogle Scholar
  104. 104.
    Biegon A. In vivo visualization of aromatase in animals and humans. Front Neuroendocrinol. 2016;40:42–51.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Balthazart J, Ball GF. Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci. 2006;29(5):241–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Saldanha CJ, Remage-Healey L, Schlinger BA. Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev. 2011;32(4):532–49.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cornil CA, Leung CH, Pletcher ER, Naranjo KC, Blauman SJ, Saldanha CJ. Acute and specific modulation of presynaptic aromatization in the vertebrate brain. Endocrinology. 2012;153(6):2562–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, et al. Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci. 2004;24(26):5913–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Prange-Kiel J, Fester L, Zhou L, Lauke H, Carretero J, Rune GM. Inhibition of hippocampal estrogen synthesis causes region-specific downregulation of synaptic protein expression in hippocampal neurons. Hippocampus. 2006;16(5):464–71.PubMedCrossRefGoogle Scholar
  110. 110.
    Srivastava DP, Woolfrey KM, Liu F, Brandon NJ, Penzes P. Estrogen receptor ss activity modulates synaptic signaling and structure. J Neurosci. 2010;30(40):13454–60.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Vierk R, Glassmeier G, Zhou L, Brandt N, Fester L, Dudzinski D, et al. Aromatase inhibition abolishes LTP generation in female but not in male mice. J Neurosci. 2012;32(24):8116–26.PubMedCrossRefGoogle Scholar
  112. 112.
    Bender RA, Zhou L, Vierk R, Brandt N, Keller A, Gee CE, et al. Sex-dependent regulation of aromatase-mediated synaptic plasticity in the basolateral amygdala. J Neurosci. 2017;37(6):1532–45.PubMedCrossRefGoogle Scholar
  113. 113.
    Liu M, Huangfu X, Zhao Y, Zhang D, Zhang J. Steroid receptor coactivator-1 mediates letrozole induced downregulation of postsynaptic protein PSD-95 in the hippocampus of adult female rats. J Steroid Biochem Mol Biol. 2015;154:168–75.PubMedCrossRefGoogle Scholar
  114. 114.
    Bailey DJ, Ma C, Soma KK, Saldanha CJ. Inhibition of hippocampal aromatization impairs spatial memory performance in a male songbird. Endocrinology. 2013;154(12):4707–14.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Meng FT, Ni RJ, Zhang Z, Zhao J, Liu YJ, Zhou JN. Inhibition of oestrogen biosynthesis induces mild anxiety in C57BL/6J ovariectomized female mice. Neurosci Bull. 2011;27(4):241–50.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Taylor GT, Manzella FM, Huffman J, Cabrera OH, Hoffman J. Cognition in female rats after blocking conversion of androgens to estrogens. Horm Behav. 2017;90:84–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Zameer S, Vohora D. Effect of aromatase inhibitors on learning and memory and modulation of hippocampal dickkopf-1 and sclerostin in female mice. Pharmacol Rep. 2017;69(6):1300–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci. 2004;20(1):217–28.PubMedCrossRefGoogle Scholar
  119. 119.
    Phillips KA, Aldridge J, Ribi K, Sun Z, Thompson A, Harvey V, et al. Cognitive function in postmenopausal breast cancer patients one year after completing adjuvant endocrine therapy with letrozole and/or tamoxifen in the BIG 1-98 trial. Breast Cancer Res Treat. 2011;126(1):221–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Li C, Zhou C, Li R. Can exercise ameliorate aromatase inhibitor-induced cognitive decline in breast cancer patients? Mol Neurobiol. 2016;53(6):4238–46.PubMedCrossRefGoogle Scholar
  121. 121.
    Seliktar N, Polek C, Brooks A, Hardie T. Cognition in breast cancer survivors: hormones versus depression. Psychooncology. 2015;24(4):402–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Iivonen S, Corder E, Lehtovirta M, Helisalmi S, Mannermaa A, Vepsalainen S, et al. Polymorphisms in the CYP19 gene confer increased risk for Alzheimer disease. Neurology. 2004;62(7):1170–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Huang R, Poduslo SE. CYP19 haplotypes increase risk for Alzheimer’s disease. J Med Genet. 2006;43(8):e42.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Combarros O, Sanchez-Juan P, Riancho JA, Mateo I, Rodriguez-Rodriguez E, Infante J, et al. Aromatase and interleukin-10 genetic variants interactively modulate Alzheimer’s disease risk. J Neural Transm (Vienna). 2008;115(6):863–7.CrossRefGoogle Scholar
  125. 125.
    Corbo RM, Gambina G, Ulizzi L, Moretto G, Scacchi R. Genetic variation of CYP19 (aromatase) gene influences age at onset of Alzheimer’s disease in women. Dement Geriatr Cogn Disord. 2009;27(6):513–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Chace C, Pang D, Weng C, Temkin A, Lax S, Silverman W, et al. Variants in CYP17 and CYP19 cytochrome P450 genes are associated with onset of Alzheimer’s disease in women with down syndrome. J Alzheimers Dis. 2012;28(3):601–12.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Janicki SC, Park N, Cheng R, Schupf N, Clark LN, Lee JH. Aromatase variants modify risk for Alzheimer’s disease in a multiethnic female cohort. Dement Geriatr Cogn Disord. 2013;35(5–6):340–6.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zheng J, Yan H, Shi L, Kong Y, Zhao Y, Xie L, et al. The CYP19A1 rs3751592 variant confers susceptibility to Alzheimer disease in the Chinese Han population. Medicine (Baltimore). 2016;95(35):e4742.CrossRefGoogle Scholar
  129. 129.
    Nelson BS, Black KL, Daniel JM. Circulating estradiol regulates brain-derived estradiol via actions at GnRH receptors to impact memory in ovariectomized rats. eNeuro. 2016;3(6).  https://doi.org/10.1523/ENEURO.0321-16.2016
  130. 130.
    Li R, He P, Cui J, Staufenbiel M, Harada N, Shen Y. Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer’s transgenic mice. Mol Neurobiol. 2013;47(3):857–67.PubMedCrossRefGoogle Scholar
  131. 131.
    Fester L, Rune GM. Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Res. 1621;2015:162–9.Google Scholar
  132. 132.
    Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci. 2017;18(6):335–46.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Sohrabji F, Bake S. Age-related changes in neuroprotection: is estrogen pro-inflammatory for the reproductive senescent brain? Endocrine. 2006;29(2):191–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Munive V, Santi A, Torres-Aleman I. A concerted action of estradiol and insulin like growth factor I underlies sex differences in mood regulation by exercise. Sci Rep. 2016;6:25969.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Society of Gynecological Endocrinology 2019

Authors and Affiliations

  • Natalia Yanguas-Casás
    • 1
    • 2
  • Maria Elvira Brocca
    • 1
  • Iñigo Azcoitia
    • 2
    • 3
  • Maria Angeles Arevalo
    • 1
    • 2
  • Luis M. Garcia-Segura
    • 1
    • 2
    Email author
  1. 1.Instituto CajalCSICMadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
  3. 3.Department of Cell Biology, Faculty of BiologyUniversidad ComplutenseMadridSpain

Personalised recommendations