Advertisement

Molecular Predictors of Clinical Behavior in Pituitary Adenohypophysial Tumors

  • Shereen Ezzat
  • Sylvia L. Asa
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Pituitary adenohypophysial tumors range from small indolent incidental findings to progressive neoplasms that invade the base of the brain. This chapter focuses on biomarkers that have been examined to help distinguish between these differing behaviors. This is particularly relevant in childhood cases where treatment and surveillance plans can have far-reaching implications. We review the familial syndromes that predispose to tumor development. We emphasize the histological subtypes that can be diagnosed using morphologic and immunophenotyping techniques. We then review candidate biomarkers including proliferation markers, metalloproteinases, growth factors and their receptors, as well as hormone and cytokine receptors. We conclude with larger chromosomal aberrations and microRNAs that have been implicated in epigenetic dysregulation. These data provide an integrated approach to formulate a risk stratification system for patients with pituitary tumors.

Keywords

Aggressive pituitary tumors Pituitary neuroendocrine tumors Pituitary adenoma Growth factors Growth factor receptors FGFR4 MMP Ki-67 p53 PTTG Loss of 11p miRNAs Biomarkers 

References

  1. 1.
    Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613–9.Google Scholar
  2. 2.
    Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege. Belgium J Clin Endocrinol Metab. 2006;91(12):4769–75.Google Scholar
  3. 3.
    Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol. 2010;72(3):377–82.Google Scholar
  4. 4.
    Asa SL, Casar-Borota O, Chanson P, et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer. 2017;24(4):C5–8.Google Scholar
  5. 5.
    Asa SL, Ezzat S. Aggressive pituitary tumors or localized pituitary carcinomas: defining pituitary tumors. Expert Rev Endocrinol Metab. 2016;11(2):149–62.Google Scholar
  6. 6.
    DeLellis RA, Lloyd RV, Heitz PU, Eng C. Pathology and genetics of tumours of endocrine organs. Lyons: IARC Press; 2004.Google Scholar
  7. 7.
    Lloyd RV, Osamura RY, Kloppel G, Rosai J. WHO Classification of Tumours of Endocrine Organs (4th edition), Lyon, IARC Press; 2017.Google Scholar
  8. 8.
    Miermeister CP, Petersenn S, Buchfelder M, et al. Histological criteria for atypical pituitary adenomas – data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun. 2015;3:50.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Wierinckx A, Auger C, Devauchelle P, et al. A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer. 2007;14(3):887–900.Google Scholar
  10. 10.
    Lyssikatos C, Fauez FR, Stratakis CA. Familial endocrine tumor syndromes. In: Mete O, Asa SL, editors. Endocrine pathology. Cambridge: Cambridge University Press; 2016. p. 56–70.Google Scholar
  11. 11.
    Scheithauer BW, Laws ER Jr, Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol. 1987;4(3):205–11.Google Scholar
  12. 12.
    Lee M, Pellegata NS. Multiple endocrine neoplasia type 4. Front Horm Res. 2013;41:63–78.Google Scholar
  13. 13.
    Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276:404–7.Google Scholar
  14. 14.
    Zhuang Z, Ezzat S, Vortmeyer AO, et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res. 1997;57:5446–51.Google Scholar
  15. 15.
    Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A. 2006;103(42):15558–63.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Georgitsi M, Raitila A, Karhu A, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab. 2007;92(8):3321–5.Google Scholar
  17. 17.
    Georgitsi M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab. 2010;24(3):425–37.Google Scholar
  18. 18.
    Verges B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab. 2002;87(2):457–65.Google Scholar
  19. 19.
    Sandrini F, Kirschner LS, Bei T, et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22-24) are rarely altered in pituitary tumours outside the Carney complex. J Med Genet. 2002;39(12):e78.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228–30.Google Scholar
  21. 21.
    Daly AF, Tichomirowa MA, Petrossians P, et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab. 2010;95(11):E373–83.Google Scholar
  22. 22.
    Tahir A, Chahal HS, Korbonits M. Molecular genetics of the aip gene in familial pituitary tumorigenesis. Prog Brain Res. 2010;182:229–53.Google Scholar
  23. 23.
    Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol. 2007;157(4):371–82.Google Scholar
  24. 24.
    Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev. 2013;34(2):239–77.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Georgitsi M, De Menis E, Cannavo S, et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol. 2008;69(4):621–7.Google Scholar
  26. 26.
    Denes J, Kasuki L, Trivellin G, et al. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One. 2015;10(2):e0117107.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Preda V, Korbonits M, Cudlip S, Karavitaki N, Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol. 2014;171(5):659–66.Google Scholar
  28. 28.
    Martucci F, Trivellin G, Korbonits M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Investig. 2012;35(11):1003–14.Google Scholar
  29. 29.
    Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer. 2012;19(6):C33–40.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Papathomas TG, Gaal J, Corssmit EP, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol. 2014;170(1):1–12.PubMedGoogle Scholar
  31. 31.
    Tufton N, Roncaroli F, Hadjidemetriou I, et al. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol. 2017;28(4):320–5.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Trivellin G, Daly AF, Faucz FR, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363–74.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Asa SL. Tumors of the pituitary gland. AFIP atlas of tumor pathology, series 4, Fascicle 15, Silverberg SG, editor. Silver Spring: ARP Press; 2011.Google Scholar
  34. 34.
    Mete O, Ezzat S, Asa SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol. 2012;49(2):R69–78.PubMedGoogle Scholar
  35. 35.
    Mete O, Asa SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol. 2012;22(4):443–53.PubMedGoogle Scholar
  36. 36.
    Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol. 2009;4:97–126.PubMedGoogle Scholar
  37. 37.
    Mete O, Gomez-Hernandez K, Kucharczyk W, et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol. 2016;29(2):131–42.PubMedGoogle Scholar
  38. 38.
    Huang C, Ezzat S, Asa SL, Hamilton J. Dopaminergic resistant prolactinomas in the peripubertal population. J Pediatr Endocrinol Metab. 2006;19(7):951–3.PubMedGoogle Scholar
  39. 39.
    Pereira BD, Raimundo L, Mete O, Oliveira A, Portugal J, Asa SL. Monomorphous plurihormonal pituitary adenoma of pit-1 lineage in a giant adolescent with central hyperthyroidism. Endocr Pathol. 2016;27(1):25–33.PubMedGoogle Scholar
  40. 40.
    Hyrcza MD, Ezzat S, Mete O, Asa SL. Pituitary adenomas presenting as sinonasal or nasopharyngeal masses: a case series illustrating potential diagnostic pitfalls. Am J Surg Pathol. 2017;41(4):525–34.PubMedGoogle Scholar
  41. 41.
    Thompson LD, Seethala RR, Muller S. Ectopic sphenoid sinus pituitary adenoma (ESSPA) with normal anterior pituitary gland: a clinicopathologic and immunophenotypic study of 32 cases with a comprehensive review of the English literature. Head Neck Pathol. 2012;6(1):75–100.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Salehi F, Agur A, Scheithauer BW, Kovacs K, Lloyd RV, Cusimano M. Biomarkers of pituitary neoplasms: a review (part II). Neurosurgery. 2010;67(6):1790–8.PubMedGoogle Scholar
  43. 43.
    McCabe CJ, Khaira JS, Boelaert K, et al. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin Endocrinol. 2003;58(2):141–50.Google Scholar
  44. 44.
    McCabe CJ, Boelaert K, Tannahill LA, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 2002;87(9):4238–44.PubMedGoogle Scholar
  45. 45.
    Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol. 2004;18(10):2543–52.PubMedGoogle Scholar
  46. 46.
    Asa SL, Ezzat S. Molecular basis of pituitary development and cytogenesis. Front Horm Res. 2004;32:1–19.PubMedGoogle Scholar
  47. 47.
    Gong J, Zhao Y, Abdel-Fattah R, et al. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas. Pituitary. 2008;11(1):37–48.PubMedGoogle Scholar
  48. 48.
    Salehi F, Agur A, Scheithauer BW, Kovacs K, Lloyd RV, Cusimano M. Ki-67 in pituitary neoplasms: a review – part I. Neurosurgery. 2009;65(3):429–37.PubMedGoogle Scholar
  49. 49.
    Wierinckx A, Roche M, Raverot G, et al. Integrated genomic profiling identifies loss of chromosome 11p impacting transcriptomic activity in aggressive pituitary PRL tumors. Brain Pathol. 2011;21(5):533–43.PubMedGoogle Scholar
  50. 50.
    Cornelius A, Cortet-Rudelli C, Assaker R, et al. Endothelial expression of endocan is strongly associated with tumor progression in pituitary adenoma. Brain Pathol. 2012;22(6):757–64.PubMedGoogle Scholar
  51. 51.
    Wang H, Li WS, Shi DJ, et al. Correlation of MMP(1) and TIMP (1) expression with pituitary adenoma fibrosis. J Neuro-Oncol. 2008;90(2):151–6.Google Scholar
  52. 52.
    Sivapragasam M, Rotondo F, Lloyd RV, et al. MicroRNAs in the human pituitary. Endocr Pathol. 2011;22(3):134–43.PubMedGoogle Scholar
  53. 53.
    Bosman FT, Carneiro F, Hruban RH, Teiise ND. WHO classification of Tumours of the gastrointestinal tract. IARC, editor. [3]. Lyons; 2010.Google Scholar
  54. 54.
    Landolt AM, Shibata T, Kleihues P. Growth rate of human pituitary adenomas. J Neurosurg. 1987;67:803–6.PubMedGoogle Scholar
  55. 55.
    Thapar K, Kovacs K, Scheithauer BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery. 1996;38:99–107.PubMedGoogle Scholar
  56. 56.
    Daita G, Yonemasu Y. Dural invasion and proliferative potential of pituitary adenomas. Neurol Med Chir (Tokyo). 1996;36(4):211–4.Google Scholar
  57. 57.
    Zhao D, Tomono Y, Nose T. Expression of P27kip1 and Ki-67 in pituitary adenomas: an investigation of marker of adenoma invasiveness. Acta Neurochir. 1999;141(2):187–92.PubMedGoogle Scholar
  58. 58.
    Iuchi T, Saeki N, Osato K, Yamaura A. Proliferation, vascular endothelial growth factor expression and cavernous sinus invasion in growth hormone secreting pituitary adenomas. Acta Neurochir. 2000;142(12):1345–51.PubMedGoogle Scholar
  59. 59.
    Jaffrain-Rea ML, Di SD, Minniti G, et al. A critical reappraisal of MIB-1 labelling index significance in a large series of pituitary tumours: secreting versus non-secreting adenomas. Endocr Relat Cancer. 2002;9(2):103–13.PubMedGoogle Scholar
  60. 60.
    Wolfsberger S, Wunderer J, Zachenhofer I, et al. Expression of cell proliferation markers in pituitary adenomas – correlation and clinical relevance of MIB-1 and anti-topoisomerase-IIalpha. Acta Neurochir. 2004;146(8):831–9.PubMedGoogle Scholar
  61. 61.
    Hentschel SJ, McCutcheon I, Moore W, Durity FA. P53 and MIB-1 immunohistochemistry as predictors of the clinical behavior of nonfunctioning pituitary adenomas. Can J Neurol Sci. 2003;30(3):215–9.PubMedGoogle Scholar
  62. 62.
    Yonezawa K, Tamaki N, Kokunai T. Clinical features and growth fractions of pituitary adenomas. Surg Neurol. 1997;48(5):494–500.PubMedGoogle Scholar
  63. 63.
    Lath R, Chacko G, Chandy MJ. Determination of Ki-67 labeling index in pituitary adenomas using MIB-1 monoclonal antibody. Neurol India. 2001;49(2):144–7.PubMedGoogle Scholar
  64. 64.
    Paek KI, Kim SH, Song SH, et al. Clinical significance of Ki-67 labeling index in pituitary macroadenoma. J Korean Med Sci. 2005;20(3):489–94.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Pan LX, Chen ZP, Liu YS, Zhao JH. Magnetic resonance imaging and biological markers in pituitary adenomas with invasion of the cavernous sinus space. J Neuro-Oncol. 2005;74(1):71–6.Google Scholar
  66. 66.
    Wierzbicka-Tutka I, Sokolowski G, Baldys-Waligorska A, Adamek D, Radwanska E, Golkowski F. PTTG and Ki-67 expression in pituitary adenomas. Przegl Lek. 2016;73(2):53–8.PubMedGoogle Scholar
  67. 67.
    Chiloiro S, Doglietto F, Trapasso B, et al. Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology. 2015;101(2):143–50.PubMedGoogle Scholar
  68. 68.
    Pizarro CB, Oliveira MC, Coutinho LB, Ferreira NP. Measurement of Ki-67 antigen in 159 pituitary adenomas using the MIB-1 monoclonal antibody. Braz J Med Biol Res. 2004;37(2):235–43.PubMedGoogle Scholar
  69. 69.
    Papathomas TG, Pucci E, Giordano TJ, et al. An international Ki67 reproducibility study in adrenal cortical carcinoma. Am J Surg Pathol. 2016;40(4):569–76.PubMedGoogle Scholar
  70. 70.
    Singh S, Hallet J, Rowsell C, Law CH. Variability of Ki67 labeling index in multiple neuroendocrine tumors specimens over the course of the disease. Eur J Surg Oncol. 2014;40(11):1517–22.Google Scholar
  71. 71.
    Tang LH, Gonen M, Hedvat C, Modlin IM, Klimstra DS. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol. 2012;36(12):1761–70.Google Scholar
  72. 72.
    Focke CM, Burger H, van Diest PJ, et al. Interlaboratory variability of Ki67 staining in breast cancer. Eur J Cancer. 2017;84:219–27.Google Scholar
  73. 73.
    Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol. 1997;11:433–41.PubMedGoogle Scholar
  74. 74.
    Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 1999;285(5426):418–22.PubMedGoogle Scholar
  75. 75.
    Salehi F, Kovacs K, Scheithauer BW, et al. Immunohistochemical expression of pituitary tumor transforming gene (PTTG) in pituitary adenomas: a correlative study of tumor subtypes. Int J Surg Pathol. 2010;18(1):5–13.PubMedGoogle Scholar
  76. 76.
    Filippella M, Galland F, Kujas M, et al. Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin Endocrinol. 2006;65(4):536–43.Google Scholar
  77. 77.
    Hunter JA, Skelly RH, Aylwin SJ, et al. The relationship between pituitary tumour transforming gene (PTTG) expression and in vitro hormone and vascular endothelial growth factor (VEGF) secretion from human pituitary adenomas. Eur J Endocrinol. 2003;148(2):203–11.PubMedGoogle Scholar
  78. 78.
    Chen BT, Jain AB, Dagis A, et al. Comparison of the efficacy and safety of ultrasound-guided core needle biopsy versus fine-needle aspiration for evaluating thyroid nodules. Endocr Pract. 2015;21(2):128–35.PubMedGoogle Scholar
  79. 79.
    Sumi T, Stefaneanu L, Kovacs K, Asa SL, Rindi G. Immunohistochemical study of p53 protein in human and animal pituitary tumors. Endocr Pathol. 1993;4:95–9.Google Scholar
  80. 80.
    Levy A, Hall L, Yeundall WA, Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol. 1994;41:809–14.Google Scholar
  81. 81.
    Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery. 1996;38:765–71.Google Scholar
  82. 82.
    Ozer E, Canda MS, Ulukus C, Guray M, Erbayraktar S. Expression of Bcl-2, Bax and p53 proteins in pituitary adenomas: an immunohistochemical study. Tumori. 2003;89(1):54–9.Google Scholar
  83. 83.
    Scheithauer BW, Gaffey TA, Lloyd RV, et al. Pathobiology of pituitary adenomas and carcinomas. Neurosurgery. 2006;59(2):341–53.Google Scholar
  84. 84.
    Suliman M, Royds J, Cullen D, et al. Mdm2 and the p53 pathway in human pituitary adenomas. Clin Endocrinol. 2001;54(3):317–25.Google Scholar
  85. 85.
    Arakaki PA, Marques MR, Santos MC. MMP-1 polymorphism and its relationship to pathological processes. J Biosci. 2009;34(2):313–20.Google Scholar
  86. 86.
    Miyoshi A, Kitajima Y, Kido S, et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer. 2005;92(2):252–8.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci U S A. 2009;106(48):20318–23.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Gonzalez-Arriaga P, Pascual T, Garcia-Alvarez A, Fernandez-Somoano A, Lopez-Cima MF, Tardon A. Genetic polymorphisms in MMP 2, 9 and 3 genes modify lung cancer risk and survival. BMC Cancer. 2012;12:121.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Wasylyk C, Gutman A, Nicholson R, Wasylyk B. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 1991;10(5):1127–34.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Sharrocks AD, Brown AL, Ling Y, Yates PR. The ETS-domain transcription factor family. Int J Biochem Cell Biol. 1997;29(12):1371–87.Google Scholar
  91. 91.
    Buttice G, Duterque-Coquillaud M, Basuyaux JP, Carrere S, Kurkinen M, Stehelin D. Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene. 1996;13(11):2297–306.Google Scholar
  92. 92.
    Westermarck J, Seth A, Kahari VM. Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene. 1997;14(22):2651–60.Google Scholar
  93. 93.
    Altas M, Bayrak OF, Ayan E, et al. The effect of polymorphisms in the promoter region of the MMP-1 gene on the occurrence and invasiveness of hypophyseal adenoma. Acta Neurochir. 2010;152(9):1611–7.Google Scholar
  94. 94.
    Mandal M, Mandal A, Das S, Chakraborti T, Sajal C. Clinical implications of matrix metalloproteinases. Mol Cell Biochem. 2003;252(1–2):305–29.Google Scholar
  95. 95.
    Kawamoto H, Kawamoto K, Mizoue T, Uozumi T, Arita K, Kurisu K. Matrix metalloproteinase-9 secretion by human pituitary adenomas detected by cell immunoblot analysis. Acta Neurochir. 1996;138(12):1442–8.Google Scholar
  96. 96.
    Liu W, Kunishio K, Matsumoto Y, Okada M, Nagao S. Matrix metalloproteinase-2 expression correlates with cavernous sinus invasion in pituitary adenomas. J Clin Neurosci. 2005;12(7):791–4.Google Scholar
  97. 97.
    Hussaini IM, Trotter C, Zhao Y, et al. Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol. 2007;170(1):356–65.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol. 2009;25:567–95.Google Scholar
  100. 100.
    Bange J, Prechtl D, Cheburkin Y, et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res. 2002;62(3):840–7.Google Scholar
  101. 101.
    da Costa AV, Parise O Jr, Hors CP, de Melo Martins PC, Silva AP, Garicochea B. The fibroblast growth factor receptor 4 (FGFR4) Arg388 allele correlates with survival in head and neck squamous cell carcinoma. Exp Mol Pathol. 2007;82(1):53–7.Google Scholar
  102. 102.
    Falvella FS, Frullanti E, Galvan A, et al. FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung. Int J Cancer. 2009;124(12):2880–5.Google Scholar
  103. 103.
    Frullanti E, Berking C, Harbeck N, et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 2011;20(4):340–7.Google Scholar
  104. 104.
    Sugiyama N, Varjosalo M, Meller P, et al. FGF receptor-4 (FGFR4) polymorphism acts as an activity switch of a membrane type 1 matrix metalloproteinase-FGFR4 complex. Proc Natl Acad Sci U S A. 2010;107(36):15786–91.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL. Membrane-anchored expression of transforming growth factor-a in human pituitary adenoma cells. J Clin Endocrinol Metab. 1995;80:534–9.Google Scholar
  106. 106.
    LeRiche V, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab. 1996;81:656–62.Google Scholar
  107. 107.
    Roh M, Paterson AJ, Asa SL, Chin E, Kudlow JE. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol. 2001;15(4):600–13.Google Scholar
  108. 108.
    Hayashi K, Inoshita N, Kawaguchi K, et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur J Endocrinol. 2016;174(2):213–26.Google Scholar
  109. 109.
    Reincke M, Sbiera S, Hayakawa A, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47(1):31–8.Google Scholar
  110. 110.
    Ma ZY, Song ZJ, Chen JH, et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015;25(3):306–17.Google Scholar
  111. 111.
    Perez-Rivas LG, Theodoropoulou M, Ferrau F, et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab. 2015;100(7):E997–1004.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Cooper O, Vlotides G, Fukuoka H, Greene MI, Melmed S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer. 2011;18(6):R197–211.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Liu X, Kano M, Araki T, et al. ErbB receptor-driven prolactinomas respond to targeted lapatinib treatment in female transgenic mice. Endocrinology. 2015;156(1):71–9.PubMedGoogle Scholar
  114. 114.
    Ezzat S, Smyth HS, Ramyar L, Asa SL. Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J Clin Endocrinol Metab. 1995;80:878–84.PubMedGoogle Scholar
  115. 115.
    Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011;437(2):199–213.PubMedGoogle Scholar
  116. 116.
    Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A, Ezzat S. The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet. 2011;7(12):e1002400.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Nakano-Tateno T, Tateno T, Hlaing MM, et al. FGFR4 polymorphic variants modulate phenotypic features of Cushing disease. Mol Endocrinol. 2014;28(4):525–33.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Daniel L, Trouillas J, Renaud W, et al. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res. 2000;60(1):80–5.Google Scholar
  119. 119.
    Ezzat S, Zheng L, Winer D, Asa SL. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct Pathogenetic and therapeutic implications. Mol Endocrinol. 2006;20(11):2965–75.Google Scholar
  120. 120.
    Asa SL, Ezzat S. Genetics and proteomics of pituitary tumors. Endocrine. 2005;28(1):43–7.Google Scholar
  121. 121.
    Asa SL. The role of hypothalamic hormones in the pathogenesis of pituitary adenomas. Pathol Res Pract. 1991;187:581–3.Google Scholar
  122. 122.
    Sano T, Asa SL, Kovacs K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations. Endocr Rev. 1988;9:357–73.Google Scholar
  123. 123.
    Spada A, Arosio M, Bochicchio D, et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab. 1990;71:1421–6.Google Scholar
  124. 124.
    Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha-chain of Gs ans stimulate adenylate cyclase in human pituitary tumors. Nature. 1989;340:692–6.Google Scholar
  125. 125.
    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95.Google Scholar
  126. 126.
    Bhayana S, Booth GL, Asa SL, Kovacs K, Ezzat S. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab. 2005;90(11):6290–5.Google Scholar
  127. 127.
    Asa SL, Coschigano KT, Bellush L, Kopchick JJ, Ezzat S. Evidence for growth hormone (GH) autoregulation in pituitary somatotrophs in GH antagonist-transgenic mice and GH receptor-deficient mice. Am J Pathol. 2000;156(3):1009–15.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Putzolu M, Meloni A, Loche S, Pischedda C, Cao A, Moi P. A homozygous nonsense mutation of the human growth hormone receptor gene in a Sardinian boy with Laron-type dwarfism. J Endocrinol Investig. 1997;20(5):286–8.Google Scholar
  129. 129.
    Chen X, Song F, Dai Y, Bao X, Jin Y. A novel mutation of the growth hormone receptor gene (GHR) in a Chinese girl with Laron syndrome. J Pediatr Endocrinol Metab. 2003;16(8):1183–9.Google Scholar
  130. 130.
    Shevah O, Galli-Tsinopoulou A, Rubinstein M, Nousia-Arvanitakis S, Laron Z. Classical phenotype of Laron syndrome in a girl with a heterozygous mutation and heterozygous polymorphism of the growth hormone receptor gene. J Pediatr Endocrinol Metab. 2004;17(3):371–4.Google Scholar
  131. 131.
    Ezzat S, Kontogeorgos G, Redelmeier DA, Horvath E, Harris AG, Kovacs K. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur J Endocrinol. 1995;133:686–90.PubMedGoogle Scholar
  132. 132.
    Asa SL, Kucharczyk W, Ezzat S. Pituitary acromegaly: not one disease. Endocr Relat Cancer. 2017;24(3):C1–4.PubMedGoogle Scholar
  133. 133.
    Asa SL, DiGiovanni R, Jiang J, et al. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res. 2007;67(15):7505–11.PubMedGoogle Scholar
  134. 134.
    Kelly PA, Binart N, Lucas B, Bouchard B, Goffin V. Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front Neuroendocrinol. 2001;22(2):140–5.PubMedGoogle Scholar
  135. 135.
    Schuff KG, Hentges ST, Kelly MA, et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J Clin Invest. 2002;110(7):973–81.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Jin L, Qian X, Kulig E, et al. Prolactin receptor messenger ribonucleic acid in normal and neoplastic human pituitary tissues. J Clin Endocrinol Metab. 1997;82(3):963–8.PubMedGoogle Scholar
  137. 137.
    Newey PJ, Gorvin CM, Cleland SJ, et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med. 2013;369(21):2012–20.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Weil RJ, Vortmeyer AO, Huang S, et al. 11q13 allelic loss in pituitary tumors in patients with multiple endocrine neoplasia syndrome type 1. Clin Cancer Res. 1998;4(7):1673–8.PubMedGoogle Scholar
  139. 139.
    Pack SD, Qin LX, Pak E, et al. Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer. 2005;43(1):72–82.PubMedGoogle Scholar
  140. 140.
    Kiechle-Schwarz M, Bauknecht T, Wienker T, Walz L, Pfleiderer A. Loss of constitutional heterozygosity on chromosome 11p in human ovarian cancer. Positive correlation with grade of differentiation. Cancer. 1993;72(8):2423–32.PubMedGoogle Scholar
  141. 141.
    Voorter CE, Ummelen MI, Ramaekers FS, Hopman AH. Loss of chromosome 11 and 11 p/q imbalances in bladder cancer detected by fluorescence in situ hybridization. Int J Cancer. 1996;65(3):301–7.PubMedGoogle Scholar
  142. 142.
    Kitamura Y, Shimizu K, Ito K, Tanaka S, Emi M. Allelotyping of follicular thyroid carcinoma: frequent allelic losses in chromosome arms 7q, 11p, and 22q. J Clin Endocrinol Metab. 2001;86(9):4268–72.PubMedGoogle Scholar
  143. 143.
    Raverot G, Sturm N, de Fraipont F, et al. Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J Clin Endocrinol Metab. 2010;95(10):4592–9.PubMedGoogle Scholar
  144. 144.
    Newey PJ, Thakker RV. Role of multiple endocrine neoplasia type 1 mutational analysis in clinical practice. Endocr Pract. 2011;17(Suppl 3):8–17.PubMedGoogle Scholar
  145. 145.
    Stilling G, Sun Z, Zhang S, et al. MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine. 2010;38(1):67–75.PubMedGoogle Scholar
  146. 146.
    Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2009;94(1):320–3.PubMedGoogle Scholar
  147. 147.
    Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210(2):370–7.PubMedGoogle Scholar
  148. 148.
    de Kock L, Sabbaghian N, Plourde F, et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 2014;128(1):111–22.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Qian ZR, Asa SL, Siomi H, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 2009;22(3):431–41.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shereen Ezzat
    • 1
  • Sylvia L. Asa
    • 2
  1. 1.Medicine, University Health NetworkUniversity of TorontoTorontoCanada
  2. 2.PathologyUniversity Health Network, University of TorontoTorontoCanada

Personalised recommendations