Advertisement

Brain Irradiation Paradigms for Childhood Central Nervous System Tumors

  • Benjamin T. CooperEmail author
  • Ralph E. Vatner
  • Helen A. Shih
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Radiotherapy with ionizing radiation is an effective therapeutic tool for benign and malignant brain tumors in children, but it also contributes to late toxicity experienced by survivors of childhood cancer. The more frequently used external beam radiotherapy techniques with photons (X-rays) or protons will be discussed, as well as special applications such as stereotactic radiosurgery and less commonly used techniques such as brachytherapy. Common indications for central nervous system radiotherapy in the pediatric population will be reviewed. Advances in treatment technology including image guidance, intensity-modulated radiation therapy, and proton therapy have resulted in decreased radiation exposure of normal tissues and should decrease the incidence and severity of late effects of radiotherapy.

Keywords

Radiation Radiotherapy Endocrinology Hypothalamic-pituitary axis Hypopituitary Protons Endocrine dysfunction Brain tumor 

References

  1. 1.
    Macmillan M. Localisation and William Macewen’s early brain surgery Part I: the controversy. J Hist Neurosci. 2004;13(4):297–325.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kogelnik HD. The history and evolution of radiotherapy and radiation oncology in Austria. Int J Radiat Oncol Biol Phys. 1996;35(2):219–26.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Röntgen WC. ON A NEW KIND OF RAYS. Science. 1896;3(59):227–31.Google Scholar
  4. 4.
    Béclère A. The radio-therapeutic treatment of tumours of the hypophysis, gigantism, and acromegaly. Arch Roentgen Ray. 1909;14(5):142–50.Google Scholar
  5. 5.
    Hall EJ, Giaccia AJ. Radiobiology for the radiologist. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
  6. 6.
    Lawenda BD, et al. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst. 2008;100(11):773–83.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones JB, et al. Radioprotective effect of free radical scavenging enzymes. J Otolaryngol. 1990;19(5):299–306.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153(4):357–70.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schultheiss TE, Stephens LC. Invited review: permanent radiation myelopathy. Br J Radiol. 1992;65(777):737–53.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hua C, et al. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int J Radiat Oncol Biol Phys. 2008;72(3):892–9.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hilgartner HL. Report of case of double glioma treated with x-ray. 1903. Tex Med. 2005;101(7):10.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bagshaw MA, Kaplan HS. Supervoltage linear accelerator radiation therapy. 8. Retinoblastoma. Radiology. 1966;86(2):242–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bhattacharyya KB. Godfrey newbold hounsfield (1919-2004): the man who revolutionized neuroimaging. Ann Indian Acad Neurol. 2016;19(4):448–50.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol. 1988;12(2):129–40.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Goitein M. The inverse problem. Int J Radiat Oncol Biol Phys. 1990;18(2):489–91.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Holmes T, Mackie TR. A filtered backprojection dose calculation method for inverse treatment planning. Med Phys. 1994;21(2):303–13.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mohan R, et al. The potential and limitations of the inverse radiotherapy technique. Radiother Oncol. 1994;32(3):232–48.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Parhar PK, et al. Decreasing temporal lobe dose with five-field intensity-modulated radiotherapy for treatment of pituitary macroadenomas. Int J Radiat Oncol Biol Phys. 2010;78(2):379–84.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Elson A, et al. Effect of treatment modality on the hypothalamic-pituitary function of patients treated with radiation therapy for pituitary adenomas: hypothalamic dose and endocrine outcomes. Front Oncol. 2014;4:73.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Gupta M, et al. A dosimetric comparison between three-dimensional conformal radiation therapy and intensity-modulated radiation therapy in the treatment of posterior fossa boost in medulloblastoma. J Cancer Res Ther. 2017;13(6):1027–31.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bhatnagar A, Deutsch M. The Role for intensity modulated radiation therapy (IMRT) in pediatric population. Technol Cancer Res Treat. 2006;5(6):591–5.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Briere TM, et al. Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: single institution clinical experience. Radiat Oncol. 2017;12(1):79.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Moteabbed M, Yock TI, Paganetti H. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Phys Med Biol. 2014;59(12):2883–99.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Rehman J, et al. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: a phantom study. Med Dosim. 2015;40(1):70–5.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wilson RR. Radiological use of fast protons. Radiology. 1946;47(5):487–91.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Miralbell R, Lomax A, Russo M. Potential role of proton therapy in the treatment of pediatric medulloblastoma/primitive neuro-ectodermal tumors: spinal theca irradiation. Int J Radiat Oncol Biol Phys. 1997;38(4):805–11.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Particle Facilities in operation. Particle Therapy Co-Operative Group 2018 [cited 2018 9/19]; Available from: https://www.ptcog.ch/index.php/facilities-in-operation.
  28. 28.
    Yeung D, McKenzie C, Indelicato DJ. A dosimetric comparison of intensity-modulated proton therapy optimization techniques for pediatric craniopharyngiomas: a clinical case study. Pediatr Blood Cancer. 2014;61(1):89–94.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Raju MR, Carpenter SG. A heavy particle comparative study. Part IV: acute and late reactions. Br J Radiol. 1978;51(609):720–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ebner DK, Kamada T. The emerging role of carbon-ion radiotherapy. Front Oncol. 2016;6:140.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Suchorska B, et al. Stereotactic brachytherapy using iodine 125 seeds for the treatment of primary and recurrent anaplastic glioma WHO degrees III. J Neurooncol. 2016;130(1):123–31.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ansari SF, et al. Efficacy of phosphorus-32 brachytherapy without external-beam radiation for long-term tumor control in patients with craniopharyngioma. J Neurosurg Pediatr. 2016;17(4):439–45.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kleinberg LR, et al. Outcome of Adult Brain Tumor Consortium (ABTC) prospective dose-finding trials of I-125 balloon brachytherapy in high-grade gliomas: challenges in clinical trial design and technology development when MRI treatment effect and recurrence appear similar. J Radiat Oncol. 2015;4(3):235–41.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Vitaz TW, et al. Brachytherapy for brain tumors. J Neurooncol. 2005;73(1):71–86.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gutin PH, et al. Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg. 1984;60(1):61–8.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Echevarria ME, Fangusaro J, Goldman S. Pediatric central nervous system germ cell tumors: a review. Oncologist. 2008;13(6):690–9.PubMedGoogle Scholar
  37. 37.
    Bamberg M, et al. Radiation therapy for intracranial germinoma: results of the German cooperative prospective trials MAKEI 83/86/89. J Clin Oncol. 1999;17(8):2585–92.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Maity A, et al. Craniospinal radiation in the treatment of biopsy-proven intracranial germinomas: twenty-five years’ experience in a single center. Int J Radiat Oncol Biol Phys. 2004;58(4):1165–70.PubMedGoogle Scholar
  39. 39.
    Allen JC, et al. A phase II trial of preirradiation carboplatin in newly diagnosed germinoma of the central nervous system. Cancer. 1994;74(3):940–4.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Calaminus G, et al. SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro Oncol. 2013;15(6):788–96.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Calaminus G, et al. Intracranial germ cell tumors: a comprehensive update of the European data. Neuropediatrics. 1994;25(1):26–32.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Goldman S, et al. Phase II trial assessing the ability of neoadjuvant chemotherapy with or without second-look surgery to eliminate measurable disease for nongerminomatous germ cell tumors: a Children’s Oncology Group Study. J Clin Oncol. 2015;33(22):2464–71.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Fernandez-Miranda JC, et al. Craniopharyngioma: a pathologic, clinical, and surgical review. Head Neck. 2012;34(7):1036–44.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Caldarelli M, et al. Long-term results of the surgical treatment of craniopharyngioma: the experience at the Policlinico Gemelli, Catholic University, Rome. Childs Nerv Syst. 2005;21(8–9):747–57.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hoffman HJ, et al. Aggressive surgical management of craniopharyngiomas in children. J Neurosurg. 1992;76(1):47–52.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Elliott RE, et al. Efficacy and safety of radical resection of primary and recurrent craniopharyngiomas in 86 children. J Neurosurg Pediatr. 2010;5(1):30–48.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Merchant TE, et al. Craniopharyngioma: the St. Jude Children’s Research Hospital experience 1984–2001. Int J Radiat Oncol Biol Phys. 2002;53(3):533–42.PubMedGoogle Scholar
  48. 48.
    Bishop AJ, et al. Proton beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int J Radiat Oncol Biol Phys. 2014;90(2):354–61.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Merchant TE, et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51(1):110–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lamiman K, et al. A quantitative analysis of craniopharyngioma cyst expansion during and after radiation therapy and surgical implications. Neurosurg Focus. 2016;41(6):E15.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Kiehna EN, Merchant TE. Radiation therapy for pediatric craniopharyngioma. Neurosurg Focus. 2010;28(4):E10.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lee CC, et al. Gamma Knife surgery for craniopharyngioma: report on a 20-year experience. J Neurosurg. 2014;121 Suppl:167–78.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Shahzadi S, et al. Treatment of cystic craniopharyngioma with intracystic stereotactic instillation of phosphorus 32. Iran J Child Neurol. 2017;11(3):31–6.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang S, et al. Intracystic bleomycin for cystic craniopharyngiomas in children. Cochrane Database Syst Rev. 2016;7:Cd008890.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Guaraldi F, et al. Paediatric pituitary adenomas: a decade of change. Horm Res Paediatr. 2014;81(3):145–55.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hoffmann A, et al. Pediatric prolactinoma: initial presentation, treatment, and long-term prognosis. Eur J Pediatr. 2018;177(1):125–32.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gadelha MR, et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(11):875–84.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Lim EM, Pullan P. Biochemical assessment and long-term monitoring in patients with acromegaly: statement from a joint consensus conference of the Growth Hormone Research Society and the Pituitary Society. Clin Biochem Rev. 2005;26(2):41–3.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Storr HL, et al. Endonasal endoscopic transsphenoidal pituitary surgery: early experience and outcome in paediatric Cushing’s disease. Clin Endocrinol (Oxf). 2014;80(2):270–6.Google Scholar
  60. 60.
    Chivukula S, et al. Endoscopic endonasal skull base surgery in the pediatric population. J Neurosurg Pediatr. 2013;11(3):227–41.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab. 2011;96(7):1992–2003.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Thomas RP, et al. Treatment options for optic pathway gliomas. Curr Treat Options Neurol. 2015;17(2):333.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Campen CJ, Gutmann DH. Optic pathway gliomas in neurofibromatosis type 1. J Child Neurol. 2018;33(1):73–81.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Aihara Y, et al. Pediatric optic pathway/hypothalamic glioma. Neurol Med Chir (Tokyo). 2018;58(1):1–9.Google Scholar
  65. 65.
    Smoll NR, Drummond KJ. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 2012;19(11):1541–4.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Hughes EN, et al. Medulloblastoma at the joint center for radiation therapy between 1968 and 1984. The influence of radiation dose on the patterns of failure and survival. Cancer. 1988;61(10):1992–8.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Packer RJ, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24(25):4202–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Goldstein AM, Yuen J, Tucker MA. Second cancers after medulloblastoma: population-based results from the United States and Sweden. Cancer Causes Control. 1997;8(6):865–71.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ostrom QT, et al. Alex’s Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2015;16(Suppl 10):x1–x36.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Schroeder TM, et al. Intensity-modulated radiation therapy in childhood ependymoma. Int J Radiat Oncol Biol Phys. 2008;71(4):987–93.PubMedPubMedCentralGoogle Scholar
  71. 71.
    McGuire CS, Sainani KL, Fisher PG. Incidence patterns for ependymoma: a surveillance, epidemiology, and end results study. J Neurosurg. 2009;110(4):725–9.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kahalley LS, et al. Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J Clin Oncol. 2016;34(10):1043–9.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Indelicato DJ, et al. Outcomes following proton therapy for pediatric ependymoma. Acta Oncol. 2018;57(5):644–8.PubMedPubMedCentralGoogle Scholar
  74. 74.
    De Amorim Bernstein K, et al. Early clinical outcomes using proton radiation for children with central nervous system atypical teratoid rhabdoid tumors. Int J Radiat Oncol Biol Phys. 2013;86(1):114–20.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Stokland T, et al. A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro Oncol. 2010;12(12):1257–68.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Ater JL, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(21):2641–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    MacDonald TJ, Aguilera D, Kramm CM. Treatment of high-grade glioma in children and adolescents. Neuro Oncol. 2011;13(10):1049–58.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Broniscer A, Gajjar A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist. 2004;9(2):197–206.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Follin C, Erfurth EM. Long-term effect of cranial radiotherapy on pituitary-hypothalamus area in childhood acute lymphoblastic leukemia survivors. Curr Treat Options Oncol. 2016;17(9):50.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Constine LS, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328(2):87–94.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kirk JA, et al. Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet. 1987;1(8526):190–3.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Sklar C, et al. Final height after treatment for childhood acute lymphoblastic leukemia: comparison of no cranial irradiation with 1800 and 2400 centigrays of cranial irradiation. J Pediatr. 1993;123(1):59–64.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Pasqualini T, et al. Evaluation of gonadal function following long-term treatment for acute lymphoblastic leukemia in girls. Am J Pediatr Hematol Oncol. 1987;9(1):15–22.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Follin C, et al. Prolactin insufficiency but normal thyroid hormone levels after cranial radiotherapy in long-term survivors of childhood leukaemia. Clin Endocrinol (Oxf). 2013;79(1):71–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benjamin T. Cooper
    • 1
    Email author
  • Ralph E. Vatner
    • 2
  • Helen A. Shih
    • 3
  1. 1.Radiation OncologyNYU Langone HealthNew YorkUSA
  2. 2.Department of Radiation OncologyUniversity of Cincinnati and Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Department of Radiation OncologyMassachusetts General HospitalBostonUSA

Personalised recommendations