Neuro-Ophthalmic Diseases and Endocrinologic Function

  • Mary-Magdalene Ugo Dodd
  • Gena HeidaryEmail author
Part of the Contemporary Endocrinology book series (COE)


The purpose of this chapter is to highlight neuro-ophthalmic disease processes that have implications for endocrinologic function. We have sought to emphasize those relevant conditions which occur most commonly in the pediatric neuro-ophthalmic practice. Many of these conditions involve disease processes that localize to the sellar and suprasellar regions of the brain, with the potential to impact visual function at the level of the optic chiasm and hormonal function at the pituitary and hypothalamus. Each of these conditions warrants a multidisciplinary collaboration between neuro-ophthalmology and endocrinology to achieve the best clinical outcomes.


Optic pathway glioma Craniopharyngioma Optic nerve hypoplasia Russell diencephalic syndrome Pseudotumor cerebri 


  1. 1.
    Alt C, et al. Clinical and radiologic spectrum of septo-optic dysplasia: review of 17 cases. J Child Neurol. 2017;32(9):797–803.PubMedCrossRefGoogle Scholar
  2. 2.
    Atapattu N, et al. Septo-optic dysplasia: antenatal risk factors and clinical features in a regional study. Horm Res Paediatr. 2012;78(2):81–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Borchert M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuroophthalmol. 2012;32(1):58–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Miller SP, et al. Septo-optic dysplasia plus: a spectrum of malformations of cortical development. Neurology. 2000;54(8):1701–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Infante-Valenzuela A, et al. Septo-optic dysplasia plus diagnosed in adulthood. Neurol Sci. 2017;38:1705.PubMedCrossRefGoogle Scholar
  6. 6.
    Ryabets-Lienhard A, et al. The optic nerve hypoplasia spectrum: review of the literature and clinical guidelines. Adv Pediatr Infect Dis. 2016;63(1):127–46.Google Scholar
  7. 7.
    Mohney BG, Young RC, Diehl N. Incidence and associated endocrine and neurologic abnormalities of optic nerve hypoplasia. JAMA Ophthalmol. 2013;131(7):898–902.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ahmad T, et al. Endocrinological and auxological abnormalities in young children with optic nerve hypoplasia: a prospective study. J Pediatr. 2006;148(1):78–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Koizumi M, et al. Endocrine status of patients with septo-optic dysplasia: fourteen Japanese cases. Clin Pediatr Endocrinol. 2017;26(2):89–98.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Garcia-Filion P, et al. Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics. 2008;121(3):e653–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Goh YW, et al. Clinical and demographic associations with optic nerve hypoplasia in New Zealand. Br J Ophthalmol. 2014;98(10):1364–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Cemeroglu AP, Coulas T, Kleis L. Spectrum of clinical presentations and endocrinological findings of patients with septo-optic dysplasia: a retrospective study. J Pediatr Endocrinol Metab. 2015;28(9–10):1057–63.PubMedGoogle Scholar
  13. 13.
    Deal C, et al. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency: data from an international observational study. Horm Res Paediatr. 2013;79(5):283–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Avbelj Stefanija M, et al. Novel mutations in HESX1 and PROP1 genes in combined pituitary hormone deficiency. Horm Res Paediatr. 2015;84(3):153–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Takagi M, et al. A novel mutation in HESX1 causes combined pituitary hormone deficiency without septo optic dysplasia phenotypes. Endocr J. 2016;63(4):405–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Jabeen M, et al. Septo-optic dysplasia in a newborn presenting with bilateral dilated and fixed pupils. AJP Rep. 2016;6(1):e112–4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Catli G, et al. Acceleration of puberty during growth hormone therapy in a child with septo-optic dysplasia. J Clin Res Pediatr Endocrinol. 2014;6(2):116–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Maurya VK, et al. Septo-optic dysplasia: Magnetic Resonance Imaging findings. Med J Armed Forces India. 2015;71(3):287–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kelly JP, Phillips JO, Weiss AH. VEP analysis methods in children with optic nerve hypoplasia: relationship to visual acuity and optic disc diameter. Doc Ophthalmol. 2016;133(3):159–69.PubMedCrossRefGoogle Scholar
  20. 20.
    Pilat A, et al. High-resolution imaging of the optic nerve and retina in optic nerve hypoplasia. Ophthalmology. 2015;122(7):1330–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Garcia-Arreza A, et al. Isolated absence of septum pellucidum: prenatal diagnosis and outcome. Fetal Diagn Ther. 2013;33(2):130–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Jutley-Neilson J, Harris G, Kirk J. The identification and measurement of autistic features in children with septo-optic dysplasia, optic nerve hypoplasia and isolated hypopituitarism. Res Dev Disabil. 2013;34(12):4310–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Fink C, et al. Hypothalamic dysfunction without hamartomas causing gelastic seizures in optic nerve hypoplasia. J Child Neurol. 2015;30(2):233–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Rivkees SA, et al. Prevalence and risk factors for disrupted circadian rhythmicity in children with optic nerve hypoplasia. Br J Ophthalmol. 2010;94(10):1358–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Rivkees SA. Arrhythmicity in a child with septo-optic dysplasia and establishment of sleep-wake cyclicity with melatonin. J Pediatr. 2001;139(3):463–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Rivkees SA. Graves’ disease therapy in children: truth and inevitable consequences. J Pediatr Endocrinol Metab. 2007;20(9):953–5.PubMedGoogle Scholar
  27. 27.
    Liu GT, Volpe NJ, Galetta SL. Vision loss disorders of the chiasm. In:Neuro-ophtlamology: diagnosis and management. New York: Elsevier; 2010.Google Scholar
  28. 28.
    Brodsky MC. The optic chiasm. In:Pediatric ophthalmology and strabismus. China: Elsevier; 2017.Google Scholar
  29. 29.
    Aquilina K, et al. Optic pathway glioma in children: does visual deficit correlate with radiology in focal exophytic lesions? Childs Nerv Syst. 2015;31(11):2041–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Ertiaei A, et al. Optic pathway gliomas: clinical manifestation, treatment, and follow-up. Pediatr Neurosurg. 2016;51(5):223–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Dodgshun AJ, et al. Long-term visual outcome after chemotherapy for optic pathway glioma in children: site and age are strongly predictive. Cancer. 2015;121(23):4190–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Wan MJ, et al. Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neurooncol. 2016;129(1):173–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Trevisson E, et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by neurofibromatosis 1. J Neurooncol. 2017;134:279.PubMedCrossRefGoogle Scholar
  34. 34.
    Wagner RS. Ophthalmologic screening for optic pathway glioma in neurofibromatosis type 1. J Pediatr Ophthalmol Strabismus. 2016;53(6):333.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor M, et al. Hypothalamic-pituitary lesions in pediatric patients: endocrine symptoms often precede neuro-ophthalmic presenting symptoms. J Pediatr. 2012;161(5):855–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Gan HW, et al. Neuroendocrine morbidity after pediatric optic gliomas: a longitudinal analysis of 166 children over 30 years. J Clin Endocrinol Metab. 2015;100(10):3787–99.PubMedCrossRefGoogle Scholar
  37. 37.
    Hersh JH, G. American Academy of Pediatrics Committee. Health supervision for children with neurofibromatosis. Pediatrics. 2008;121(3):633–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Tosur M, Tomsa A, Paul DL. Diencephalic syndrome: a rare cause of failure to thrive. BMJ Case Rep. 2017;2017. pii: bcr-2017-220171.
  39. 39.
    Fleischman A, et al. Diencephalic syndrome: a cause of failure to thrive and a model of partial growth hormone resistance. Pediatrics. 2005;115(6):e742–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Poussaint TY, et al. Diencephalic syndrome: clinical features and imaging findings. AJNR Am J Neuroradiol. 1997;18(8):1499–505.PubMedGoogle Scholar
  41. 41.
    Brauner R, et al. Diencephalic syndrome due to hypothalamic tumor: a model of the relationship between weight and puberty onset. J Clin Endocrinol Metab. 2006;91(7):2467–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Nielsen EH, et al. Acute presentation of craniopharyngioma in children and adults in a Danish national cohort. Pituitary. 2013;16(4):528–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffmann A, et al. History before diagnosis in childhood craniopharyngioma: associations with initial presentation and long-term prognosis. Eur J Endocrinol. 2015;173(6):853–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Drimtzias E, et al. The ophthalmic natural history of paediatric craniopharyngioma: a long-term review. J Neurooncol. 2014;120(3):651–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Unsinn C, et al. Sellar and parasellar lesions - clinical outcome in 61 children. Clin Neurol Neurosurg. 2014;123:102–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Pandey P, Ojha BK, Mahapatra AK. Pediatric pituitary adenoma: a series of 42 patients. J Clin Neurosci. 2005;12(2):124–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamura T, et al. Pediatric pituitary adenoma. Endocr J. 2000;47 Suppl:S95–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang N, et al. A retrospective review of 34 cases of pediatric pituitary adenoma. Childs Nerv Syst. 2017;33:1961.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee IH, et al. Visual defects in patients with pituitary adenomas: the myth of bitemporal hemianopsia. AJR Am J Roentgenol. 2015;205(5):W512–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Ogra S, et al. Visual acuity and pattern of visual field loss at presentation in pituitary adenoma. J Clin Neurosci. 2014;21(5):735–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81(13):1159–65.PubMedCrossRefGoogle Scholar
  52. 52.
    Victorio MC, Rothner AD. Diagnosis and treatment of idiopathic intracranial hypertension (IIH) in children and adolescents. Curr Neurol Neurosci Rep. 2013;13(3):336.PubMedCrossRefGoogle Scholar
  53. 53.
    Per H, et al. Clinical spectrum of the pseudotumor cerebri in children: etiological, clinical features, treatment and prognosis. Brain Dev. 2013;35(6):561–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Sheldon CA, et al. Pediatric idiopathic intracranial hypertension: age, gender, and anthropometric features at diagnosis in a large, retrospective, multisite cohort. Ophthalmology. 2016;123(11):2424–31.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sheldon CA, et al. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics. Pediatr Res. 2015;77(2):282–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Beal CJ, Pao KY, Hogan RN. Intracranial hypertension due to levothyroxine use. J AAPOS. 2014;18(5):504–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Kiehna EN, et al. Pseudotumor cerebri after surgical remission of Cushing’s disease. J Clin Endocrinol Metab. 2010;95(4):1528–32.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Khan MU, et al. Idiopathic intracranial hypertension associated with either primary or secondary aldosteronism. Am J Med Sci. 2013;346(3):194–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Salpietro V, et al. New insights on the relationship between pseudotumor cerebri and secondary hyperaldosteronism in children. J Hypertens. 2012;30(3):629–30.PubMedCrossRefGoogle Scholar
  60. 60.
    Loukianou E, et al. Pseudotumor cerebri in a child with idiopathic growth hormone insufficiency two months after initiation of recombinant human growth hormone treatment. Case Rep Ophthalmol Med. 2016;2016:4756894.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rogers AH, et al. Pseudotumor cerebri in children receiving recombinant human growth hormone. Ophthalmology. 1999;106(6):1186–9; discussion 1189–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Koller EA, Stadel BV, Malozowski SN. Papilledema in 15 renally compromised patients treated with growth hormone. Pediatr Nephrol. 1997;11(4):451–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Malozowski S, et al. Growth hormone, insulin-like growth factor I, and benign intracranial hypertension. N Engl J Med. 1993;329(9):665–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Malozowski S, et al. Benign intracranial hypertension in children with growth hormone deficiency treated with growth hormone. J Pediatr. 1995;126(6):996–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Vitaliti G, et al. Therapeutic approaches to pediatric pseudotumor cerebri: new insights from literature data. Int J Immunopathol Pharmacol. 2017;30(1):94–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.OphthalmologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations