Advertisement

Embryologic and Genetic Disorders of the Pituitary Gland

  • Louise C. Gregory
  • Mehul T. DattaniEmail author
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Human embryonic hypothalamo-pituitary development is a complex process controlled by a spatio-temporal genetic cascade of transcription factors and signalling molecules within the hypothalamus and Rathke’s pouch, the primordium of the anterior pituitary (AP). The anterior and intermediate lobes of the pituitary derive from the oral ectoderm and the posterior lobe from the overlying neural ectoderm. The tightly regulated processes of cell proliferation and differentiation give rise to five different specialized AP cell types that secrete six hormones. Disordered embryogenesis can give rise to congenital hypopituitarism (CH), characterized by deficiencies in one or more of these six hormones in isolation or as combined pituitary hormone deficiency, with a wide variation in severity. CH may present early in the neonatal period or later in childhood, with midline and craniofacial structural abnormalities often accompanying the phenotype, giving rise to a range of highly variable disorders that will be discussed in this chapter.

Keywords

Hypothalamus Pituitary Septo-optic dysplasia Isolated and combined pituitary hormone deficiencies 

References

  1. 1.
    Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH, et al. Molecular mechanisms of pituitary organogenesis: in search of novel regulatory genes. Mol Cell Endocrinol. 2010;323(1):4–19.PubMedGoogle Scholar
  2. 2.
    Cohen LE. Genetic disorders of the pituitary. Curr Opin Endocrinol Diabetes Obes. 2012;19(1):33–9.PubMedGoogle Scholar
  3. 3.
    Bancalari RE, Gregory LC, McCabe MJ, Dattani MT. Pituitary gland development: an update. Endocr Dev. 2012;23:1–15.PubMedGoogle Scholar
  4. 4.
    Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev. 2009;30(7):790–829.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Alatzoglou KS, Dattani MT. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum Dev. 2009;85(11):705–12.PubMedGoogle Scholar
  6. 6.
    McCabe MJ, Gaston-Massuet C, Tziaferi V, Gregory LC, Alatzoglou KS, Signore M, et al. Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction. J Clin Endocrinol Metab. 2011;96(10):E1709–18.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Iguchi G, Okimura Y, Takahashi T, Mizuno I, Fumoto M, Takahashi Y, et al. Cloning and characterization of the 5′-flanking region of the human growth hormone-releasing hormone receptor gene. J Biol Chem. 1999;274(17):12108–14.PubMedGoogle Scholar
  8. 8.
    Alatzoglou KS, Kular D, Dattani MT. Autosomal dominant growth hormone deficiency (Type II). Pediatr Endocrinol Rev. 2015;12(4):347–55.PubMedGoogle Scholar
  9. 9.
    Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev. 2014;35(3):376–432.PubMedGoogle Scholar
  10. 10.
    Cogan JD, Phillips JA 3rd. GH1 gene deletions and IGHD type 1A. Pediatr Endocrinol Rev. 2006;3(Suppl 3):480–8.PubMedGoogle Scholar
  11. 11.
    Wagner JK, Eble A, Hindmarsh PC, Mullis PE. Prevalence of human GH-1 gene alterations in patients with isolated growth hormone deficiency. Pediatr Res. 1998;43(1):105–10.PubMedGoogle Scholar
  12. 12.
    Baumann G, Maheshwari H. The dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. Acta Paediatr Suppl. 1997;423:33–8.PubMedGoogle Scholar
  13. 13.
    Leiberman E, Pesler D, Parvari R, Elbedour K, Abdul-Latif H, Brown MR, et al. Short stature in carriers of recessive mutation causing familial isolated growth hormone deficiency. Am J Med Genet. 2000;90(3):188–92.PubMedGoogle Scholar
  14. 14.
    Phillips JA 3rd, Cogan JD. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab. 1994;78(1):11–6.PubMedGoogle Scholar
  15. 15.
    Shohreh R, Sherafat-Kazemzadeh R, Jee YH, Blitz A, Salvatori R. A novel frame shift mutation in the GHRH receptor gene in familial isolated GH deficiency: early occurrence of anterior pituitary hypoplasia. J Clin Endocrinol Metab. 2011;96(10):2982–6.PubMedGoogle Scholar
  16. 16.
    Baumann G. Mutations in the growth hormone releasing hormone receptor: a new form of dwarfism in humans. Growth Hormon IGF Res. 1999;9 Suppl B:24–9; discussion 9-30.Google Scholar
  17. 17.
    Carakushansky M, Whatmore AJ, Clayton PE, Shalet SM, Gleeson HK, Price DA, et al. A new missense mutation in the growth hormone-releasing hormone receptor gene in familial isolated GH deficiency. Eur J Endocrinol. 2003;148(1):25–30.PubMedGoogle Scholar
  18. 18.
    Salvatori R, Fan X, Mullis PE, Haile A, Levine MA. Decreased expression of the GHRH receptor gene due to a mutation in a Pit-1 binding site. Mol Endocrinol. 2002;16(3):450–8.PubMedGoogle Scholar
  19. 19.
    Gregory LC, Alatzoglou KS, McCabe MJ, Hindmarsh PC, Saldanha JW, Romano N, et al. Partial loss of function of the GHRH receptor leads to mild growth hormone deficiency. J Clin Endocrinol Metab. 2016;101(10):3608–15.PubMedGoogle Scholar
  20. 20.
    Lee MS, Wajnrajch MP, Kim SS, Plotnick LP, Wang J, Gertner JM, et al. Autosomal dominant growth hormone (GH) deficiency type II: the Del32-71-GH deletion mutant suppresses secretion of wild-type GH. Endocrinology. 2000;141(3):883–90.PubMedGoogle Scholar
  21. 21.
    McGuinness L, Magoulas C, Sesay AK, Mathers K, Carmignac D, Manneville JB, et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology. 2003;144(2):720–31.PubMedGoogle Scholar
  22. 22.
    Ryther RC, McGuinness LM, Phillips JA 3rd, Moseley CT, Magoulas CB, Robinson IC, et al. Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet. 2003;113(2):140–8.PubMedGoogle Scholar
  23. 23.
    Zhao E, Li J, Xie Y, Jin W, Zhang Z, Chen J, et al. Cloning and identification of a novel human RNPC3 gene that encodes a protein with two RRM domains and is expressed in the cell nucleus. Biochem Genet. 2003;41(9–10):315–23.PubMedGoogle Scholar
  24. 24.
    Argente J, Flores R, Gutierrez-Arumi A, Verma B, Martos-Moreno GA, Cusco I, et al. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med. 2014;6(3):299–306.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yin X, Li Y, Xu G, An W, Zhang W. Ghrelin fluctuation, what determines its production? Acta Biochim Biophys Sin. 2009;41(3):188–97.PubMedGoogle Scholar
  26. 26.
    Markmiller S, Cloonan N, Lardelli RM, Doggett K, Keightley MC, Boglev Y, et al. Minor class splicing shapes the zebrafish transcriptome during development. Proc Natl Acad Sci U S A. 2014;111(8):3062–7.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ashkenazi-Hoffnung L, Lebenthal Y, Wyatt AW, Ragge NK, Dateki S, Fukami M, et al. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Hum Genet. 2010;127(6):721–9.PubMedGoogle Scholar
  28. 28.
    Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, et al. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet. 2001;10(1):39–45.PubMedGoogle Scholar
  29. 29.
    Douchi T, Nakae M, Yamamoto S, Iwamoto I, Oki T, Nagata Y. A woman with isolated prolactin deficiency. Acta Obstet Gynecol Scand. 2001;80(4):368–70.PubMedGoogle Scholar
  30. 30.
    Kauppila A. Isolated prolactin deficiency. Curr Ther Endocrinol Metab. 1997;6:31–3.PubMedGoogle Scholar
  31. 31.
    Zargar AH, Masoodi SR, Laway BA, Shah NA, Salahudin M. Familial puerperal alactogenesis: possibility of a genetically transmitted isolated prolactin deficiency. Br J Obstet Gynaecol. 1997;104(5):629–31.PubMedGoogle Scholar
  32. 32.
    Iwama S, Welt CK, Romero CJ, Radovick S, Caturegli P. Isolated prolactin deficiency associated with serum autoantibodies against prolactin-secreting cells. J Clin Endocrinol Metab. 2013;98(10):3920–5.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Garcia M, Fernandez A, Moreno JC. Central hypothyroidism in children. Endocr Dev. 2014;26:79–107.PubMedGoogle Scholar
  34. 34.
    Sun Y, Bak B, Schoenmakers N, van Trotsenburg AS, Oostdijk W, Voshol P, et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet. 2012;44(12):1375–81.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wassner AJ, Cohen LE, Hechter E, Dauber A. Isolated central hypothyroidism in young siblings as a manifestation of PROP1 deficiency: clinical impact of whole exome sequencing. Horm Res Paediatr. 2013;79(6):379–86.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hayashizaki Y, Hiraoka Y, Endo Y, Miyai K, Matsubara K. Thyroid-stimulating hormone (TSH) deficiency caused by a single base substitution in the CAGYC region of the beta-subunit. EMBO J. 1989;8(8):2291–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Medeiros-Neto G, Herodotou DT, Rajan S, Kommareddi S, de Lacerda L, Sandrini R, et al. A circulating, biologically inactive thyrotropin caused by a mutation in the beta subunit gene. J Clin Invest. 1996;97(5):1250–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    McDermott MT, Haugen BR, Black JN, Wood WM, Gordon DF, Ridgway EC. Congenital isolated central hypothyroidism caused by a “hot spot” mutation in the thyrotropin-beta gene. Thyroid. 2002;12(12):1141–6.PubMedGoogle Scholar
  39. 39.
    Karges B, LeHeup B, Schoenle E, Castro-Correia C, Fontoura M, Pfaffle R, et al. Compound heterozygous and homozygous mutations of the TSHbeta gene as a cause of congenital central hypothyroidism in Europe. Horm Res. 2004;62(3):149–55.PubMedGoogle Scholar
  40. 40.
    Nicholas AK, Jaleel S, Lyons G, Schoenmakers E, Dattani MT, Crowne E, et al. Molecular spectrum of TSHbeta subunit gene defects in central hypothyroidism in the UK and Ireland. Clin Endocrinol (Oxf). 2017;86(3):410–8.Google Scholar
  41. 41.
    Buyukgebiz A. Newborn screening for congenital hypothyroidism. J Clin Res Pediatr Endocrinol. 2013;5(Suppl 1):8–12.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, et al. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab. 1997;82(5):1561–5.PubMedGoogle Scholar
  43. 43.
    Bonomi M, Busnelli M, Beck-Peccoz P, Costanzo D, Antonica F, Dolci C, et al. A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med. 2009;360(7):731–4.PubMedGoogle Scholar
  44. 44.
    Koulouri O, Nicholas AK, Schoenmakers E, Mokrosinski J, Lane F, Cole T, et al. A novel thyrotropin-releasing hormone receptor missense mutation (P81R) in central congenital hypothyroidism. J Clin Endocrinol Metab. 2016;101(3):847–51.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tenenbaum-Rakover Y, Turgeon MO, London S, Hermanns P, Pohlenz J, Bernard DJ, et al. Familial central hypothyroidism caused by a novel IGSF1 gene mutation. Thyroid. 2016;26(12):1693–700.PubMedGoogle Scholar
  46. 46.
    Garcia M, Barrio R, Garcia-Lavandeira M, Garcia-Rendueles AR, Escudero A, Diaz-Rodriguez E, et al. The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFbeta and Activin pathways. Sci Rep. 2017;7:42937.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Hughes JN, Aubert M, Heatlie J, Gardner A, Gecz J, Morgan T, et al. Identification of an IGSF1-specific deletion in a five-generation pedigree with X-linked Central Hypothyroidism without macroorchidism. Clin Endocrinol. 2016;85(4):609–15.Google Scholar
  48. 48.
    Joustra SD, Schoenmakers N, Persani L, Campi I, Bonomi M, Radetti G, et al. The IGSF1 deficiency syndrome: characteristics of male and female patients. J Clin Endocrinol Metab. 2013;98(12):4942–52.PubMedGoogle Scholar
  49. 49.
    Turgeon MO, Silander TL, Doycheva D, Liao XH, Rigden M, Ongaro L, et al. TRH action is impaired in pituitaries of male IGSF1-deficient mice. Endocrinology. 2017;158(4):815–30.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Bassi MT, Ramesar RS, Caciotti B, Winship IM, De Grandi A, Riboni M, et al. X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet. 1999;64(6):1604–16.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Heinen CA, Losekoot M, Sun Y, Watson PJ, Fairall L, Joustra SD, et al. Mutations in TBL1X are associated with central hypothyroidism. J Clin Endocrinol Metab. 2016;101(12):4564–73.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Ahn SW, Kim TY, Lee S, Jeong JY, Shim H, Han YM, et al. Adrenal insufficiency presenting as hypercalcemia and acute kidney injury. Int Med Case Rep J. 2016;9:223–6.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Alsaleem M, Saadeh L, Misra A, Madani S. Neonatal isolated ACTH deficiency (IAD): a potentially life-threatening but treatable cause of neonatal cholestasis. BMJ Case Rep. 2016;2016. pii: bcr2016215032.  https://doi.org/10.1136/bcr-2016-215032.
  54. 54.
    Bigos ST, Carnes TD. Isolated ACTH deficiency presenting as severe hypercalcemia. Am J Med Sci. 1982;284(1):24–30.PubMedGoogle Scholar
  55. 55.
    Doroftei NA, de Rudder C, de Visscher N, Hanon F. Isolated ACTH deficiency in a patient with empty sella as revealed by severe hyponatremia. Acta Clin Belg. 2016;71(6):451–4.PubMedGoogle Scholar
  56. 56.
    Metherell LA, Savage MO, Dattani M, Walker J, Clayton PE, Farooqi IS, et al. TPIT mutations are associated with early-onset, but not late-onset isolated ACTH deficiency. Eur J Endocrinol. 2004;151(4):463–5.PubMedGoogle Scholar
  57. 57.
    Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T, Enjalbert A, et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell. 2001;104(6):849–59.PubMedGoogle Scholar
  58. 58.
    Couture C, Saveanu A, Barlier A, Carel JC, Fassnacht M, Fluck CE, et al. Phenotypic homogeneity and genotypic variability in a large series of congenital isolated ACTH-deficiency patients with TPIT gene mutations. J Clin Endocrinol Metab. 2012;97(3):E486–95.PubMedGoogle Scholar
  59. 59.
    Akcan N, Serakinci N, Turkgenc B, Bundak R, Bahceciler N, Temel SG. A novel TBX19 gene mutation in a case of congenital isolated adrenocorticotropic hormone deficiency presenting with recurrent respiratory tract infections. Front Endocrinol. 2017;8:64.Google Scholar
  60. 60.
    Seidah NG, Chretien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999;848(1–2):45–62.PubMedGoogle Scholar
  61. 61.
    Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80(3):979–1020.PubMedGoogle Scholar
  62. 62.
    Rousseau K, Kauser S, Pritchard LE, Warhurst A, Oliver RL, Slominski A, et al. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J. 2007;21(8):1844–56.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet. 1995;11(3):328–30.PubMedGoogle Scholar
  64. 64.
    Gorrigan RJ, Guasti L, King P, Clark AJ, Chan LF. Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland. J Mol Endocrinol. 2011;46(3):227–32.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994;371(6500):799–802.PubMedGoogle Scholar
  66. 66.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7.PubMedGoogle Scholar
  67. 67.
    Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16(3):303–6.PubMedGoogle Scholar
  68. 68.
    Jackson RS, Creemers JW, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ, et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest. 2003;112(10):1550–60.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhu X, Zhou A, Dey A, Norrbom C, Carroll R, Zhang C, et al. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci U S A. 2002;99(16):10293–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Philippe J, Stijnen P, Meyre D, De Graeve F, Thuillier D, Delplanque J, et al. A nonsense loss-of-function mutation in PCSK1 contributes to dominantly inherited human obesity. Int J Obes (2005). 2015;39(2):295–302.Google Scholar
  71. 71.
    Wang L, Sui L, Panigrahi SK, Meece K, Xin Y, Kim J, et al. PC1/3 deficiency impacts pro-opiomelanocortin processing in human embryonic stem cell-derived hypothalamic neurons. Stem Cell Rep. 2017;8(2):264–77.Google Scholar
  72. 72.
    Stijnen P, Ramos-Molina B, O’Rahilly S, Creemers JW. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr Rev. 2016;37(4):347–71.PubMedGoogle Scholar
  73. 73.
    Martin MG, Lindberg I, Solorzano-Vargas RS, Wang J, Avitzur Y, Bandsma R, et al. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology. 2013;145(1):138–48.PubMedPubMedCentralGoogle Scholar
  74. 74.
    De Morsier G. Studies on malformation of cranio-encephalic sutures. III. Agenesis of the septum lucidum with malformation of the optic tract. Schweizer Archiv fur Neurologie und Psychiatrie Archives suisses de neurologie et de psychiatrie Archivio svizzero di neurologia e psichiatria. 1956;77(1–2):267–92.Google Scholar
  75. 75.
    Brodsky MC, Glasier CM. Optic nerve hypoplasia. Clinical significance of associated central nervous system abnormalities on magnetic resonance imaging. Arch Ophthalmol (Chicago, Ill: 1960). 1993;111(1):66–74.Google Scholar
  76. 76.
    McNay DE, Turton JP, Kelberman D, Woods KS, Brauner R, Papadimitriou A, et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab. 2007;92(2):691–7.PubMedGoogle Scholar
  77. 77.
    Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet. 2010;18(4):393–7.PubMedGoogle Scholar
  78. 78.
    Lippe B, Kaplan SA, LaFranchi S. Septo-optic dysplasia and maternal age. Lancet (London, England). 1979;2(8133):92–3.Google Scholar
  79. 79.
    Kelberman D, Dattani MT. Genetics of septo-optic dysplasia. Pituitary. 2007;10(4):393–407.PubMedGoogle Scholar
  80. 80.
    Kelberman D, Dattani MT. Septo-optic dysplasia - novel insights into the aetiology. Horm Res. 2008;69(5):257–65.PubMedGoogle Scholar
  81. 81.
    Mehta A, Hindmarsh PC, Mehta H, Turton JP, Russell-Eggitt I, Taylor D, et al. Congenital hypopituitarism: clinical, molecular and neuroradiological correlates. Clin Endocrinol (Oxf). 2009;71(3):376–82.Google Scholar
  82. 82.
    McCabe MJ, Alatzoglou KS, Dattani MT. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25(1):115–24.PubMedGoogle Scholar
  83. 83.
    Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson IL, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19(2):125–33.PubMedGoogle Scholar
  84. 84.
    Sajedi E, Gaston-Massuet C, Signore M, Andoniadou CL, Kelberman D, Castro S, et al. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism. Dis Model Mech. 2008;1(4–5):241–54.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Woods KS, Cundall M, Turton J, Rizotti K, Mehta A, Palmer R, et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet. 2005;76(5):833–49.PubMedPubMedCentralGoogle Scholar
  86. 86.
    McCabe MJ, Hu Y, Gregory LC, Gaston-Massuet C, Alatzoglou KS, Saldanha JW, et al. Novel application of luciferase assay for the in vitro functional assessment of KAL1 variants in three females with septo-optic dysplasia (SOD). Mol Cell Endocrinol. 2015;417:63–72.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Raivio T, Avbelj M, McCabe MJ, Romero CJ, Dwyer AA, Tommiska J, et al. Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J Clin Endocrinol Metab. 2012;97(4):E694–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Gaston-Massuet C, McCabe MJ, Scagliotti V, Young RM, Carreno G, Gregory LC, et al. Transcription factor 7-like 1 is involved in hypothalamo-pituitary axis development in mice and humans. Proc Natl Acad Sci U S A. 2016;113(5):E548–57.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Polizzi A, Pavone P, Iannetti P, Manfre L, Ruggieri M. Septo-optic dysplasia complex: a heterogeneous malformation syndrome. Pediatr Neurol. 2006;34(1):66–71.PubMedGoogle Scholar
  90. 90.
    Dasen JS, Martinez Barbera JP, Herman TS, Connell SO, Olson L, Ju B, et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001;15(23):3193–207.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Sajedi E, Gaston-Massuet C, Andoniadou CL, Signore M, Hurd PJ, Dattani M, et al. DNMT1 interacts with the developmental transcriptional repressor HESX1. Biochim Biophys Acta. 2008;1783(1):131–43.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Thomas P, Beddington R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol. 1996;6(11):1487–96.PubMedGoogle Scholar
  93. 93.
    Hermesz E, Mackem S, Mahon KA. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development. 1996;122(1):41–52.PubMedGoogle Scholar
  94. 94.
    Sobrier ML, Netchine I, Heinrichs C, Thibaud N, Vie-Luton MP, Van Vliet G, et al. Alu-element insertion in the homeodomain of HESX1 and aplasia of the anterior pituitary. Hum Mutat. 2005;25(5):503.PubMedGoogle Scholar
  95. 95.
    Kelberman D, Dattani MT. Hypothalamic and pituitary development: novel insights into the aetiology. Eur J Endocrinol. 2007;157(Suppl 1):S3–14.PubMedGoogle Scholar
  96. 96.
    Newbern K, Natrajan N, Kim HG, Chorich LP, Halvorson LM, Cameron RS, et al. Identification of HESX1 mutations in Kallmann syndrome. Fertil Steril. 2013;99(7):1831–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Stevanovic M, Lovell-Badge R, Collignon J, Goodfellow PN. SOX3 is an X-linked gene related to SRY. Hum Mol Genet. 1993;2(12):2013–8.PubMedGoogle Scholar
  98. 98.
    Hutton SR. Sox gene expression. In: Lemke G, editor. Developmental biology, vol. 2009: Elseveir. p. 165.Google Scholar
  99. 99.
    Bylund M, Andersson E, Novitch BG, Muhr J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci. 2003;6(11):1162–8.PubMedGoogle Scholar
  100. 100.
    Solomon NM, Ross SA, Morgan T, Belsky JL, Hol FA, Karnes PS, et al. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. J Med Genet. 2004;41(9):669–78.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet. 2004;36(3):247–55.PubMedGoogle Scholar
  102. 102.
    Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, et al. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn. 2008;237(4):1006–20.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wong J, Farlie P, Holbert S, Lockhart P, Thomas PQ. Polyalanine expansion mutations in the X-linked hypopituitarism gene SOX3 result in aggresome formation and impaired transactivation. Front Biosci: J Virtual Libr. 2007;12:2085–95.Google Scholar
  104. 104.
    Hamel BC, Smits AP, Otten BJ, van den Helm B, Ropers HH, Mariman EC. Familial X-linked mental retardation and isolated growth hormone deficiency: clinical and molecular findings. Am J Med Genet. 1996;64(1):35–41.PubMedGoogle Scholar
  105. 105.
    Laumonnier F, Ronce N, Hamel BC, Thomas P, Lespinasse J, Raynaud M, et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet. 2002;71(6):1450–5.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Alatzoglou KS, Azriyanti A, Rogers N, Ryan F, Curry N, Noakes C, et al. SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J Clin Endocrinol Metab. 2014;99(12):E2702–8.PubMedGoogle Scholar
  107. 107.
    Alatzoglou KS, Kelberman D, Cowell CT, Palmer R, Arnhold IJ, Melo ME, et al. Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J Clin Endocrinol Metab. 2011;96(4):E685–90.PubMedGoogle Scholar
  108. 108.
    Hutton SR, Pevny LH. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon. Dev Biol. 2011;352(1):40–7.PubMedGoogle Scholar
  109. 109.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–40.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116(9):2442–55.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006;20(9):1187–202.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet. 2006;15(9):1413–22.PubMedGoogle Scholar
  113. 113.
    Jayakody SA, Andoniadou CL, Gaston-Massuet C, Signore M, Cariboni A, Bouloux PM, et al. SOX2 regulates the hypothalamic-pituitary axis at multiple levels. J Clin Invest. 2012;122(10):3635–46.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Alatzoglou KS, Andoniadou CL, Kelberman D, Buchanan CR, Crolla J, Arriazu MC, et al. SOX2 haploinsufficiency is associated with slow progressing hypothalamo-pituitary tumours. Hum Mutat. 2011;32(12):1376–80.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Goldsmith S, Lovell-Badge R, Rizzoti K. SOX2 is sequentially required for progenitor proliferation and lineage specification in the developing pituitary. Development. 2016;143(13):2376–88.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Li H, Collado M, Villasante A, Matheu A, Lynch CJ, Canamero M, et al. p27(Kip1) directly represses Sox2 during embryonic stem cell differentiation. Cell Stem Cell. 2012;11(6):845–52.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A. 2008;105(8):2907–12.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, et al. Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell. 2013;13(4):433–45.PubMedGoogle Scholar
  119. 119.
    Frantz GD, Weimann JM, Levin ME, McConnell SK. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci. 1994;14(10):5725–40.PubMedGoogle Scholar
  120. 120.
    Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development. 1996;122(1):243–52.PubMedGoogle Scholar
  121. 121.
    Housset M, Samuel A, Ettaiche M, Bemelmans A, Beby F, Billon N, et al. Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J Neurosci. 2013;33(24):9890–904.PubMedGoogle Scholar
  122. 122.
    Mortensen AH, MacDonald JW, Ghosh D, Camper SA. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol Genomics. 2011;43(19):1105–16.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Diaczok D, DiVall S, Matsuo I, Wondisford FE, Wolfe AM, Radovick S. Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism. Mol Endocrinol (Baltimore, Md). 2011;25(5):833–46.Google Scholar
  124. 124.
    Gorbenko Del Blanco D, Romero CJ, Diaczok D, de Graaff LC, Radovick S, Hokken-Koelega AC. A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve. Eur J Endocrinol. 2012;167(3):441–52.PubMedGoogle Scholar
  125. 125.
    Tajima T, Ohtake A, Hoshino M, Amemiya S, Sasaki N, Ishizu K, et al. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J Clin Endocrinol Metab. 2009;94(1):314–9.PubMedGoogle Scholar
  126. 126.
    Chassaing N, Sorrentino S, Davis EE, Martin-Coignard D, Iacovelli A, Paznekas W, et al. OTX2 mutations contribute to the otocephaly-dysgnathia complex. J Med Genet. 2012;49(6):373–9.PubMedGoogle Scholar
  127. 127.
    Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G, et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci U S A. 2003;100(23):13424–9.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Roessler E, Ermilov AN, Grange DK, Wang A, Grachtchouk M, Dlugosz AA, et al. A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum Mol Genet. 2005;14(15):2181–8.PubMedGoogle Scholar
  129. 129.
    Gregory LC, Gaston-Massuet C, Andoniadou CL, Carreno G, Webb EA, Kelberman D, et al. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf). 2015;82(5):728–38.Google Scholar
  130. 130.
    Franca MM, Jorge AA, Carvalho LR, Costalonga EF, Vasques GA, Leite CC, et al. Novel heterozygous nonsense GLI2 mutations in patients with hypopituitarism and ectopic posterior pituitary lobe without holoprosencephaly. J Clin Endocrinol Metab. 2010;95(11):E384–91.PubMedGoogle Scholar
  131. 131.
    Franca MM, Jorge AA, Carvalho LR, Costalonga EF, Otto AP, Correa FA, et al. Relatively high frequency of non-synonymous GLI2 variants in patients with congenital hypopituitarism without holoprosencephaly. Clin Endocrinol (Oxf). 2013;78(4):551–7.Google Scholar
  132. 132.
    Bear KA, Solomon BD, Antonini S, Arnhold IJ, Franca MM, Gerkes EH, et al. Pathogenic mutations in GLI2 cause a specific phenotype that is distinct from holoprosencephaly. J Med Genet. 2014;51(6):413–8.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Flemming GM, Klammt J, Ambler G, Bao Y, Blum WF, Cowell C, et al. Functional characterization of a heterozygous GLI2 missense mutation in patients with multiple pituitary hormone deficiency. J Clin Endocrinol Metab. 2013;98(3):E567–75.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Bashamboo A, Bignon-Topalovic J, Rouba H, McElreavey K, Brauner R. A nonsense mutation in the hedgehog receptor CDON associated with pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 2016;101(1):12–5.PubMedGoogle Scholar
  135. 135.
    Karaca E, Buyukkaya R, Pehlivan D, Charng WL, Yaykasli KO, Bayram Y, et al. Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 2015;100(1):E140–7.PubMedGoogle Scholar
  136. 136.
    Blockus H, Chedotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol. 2014;27:82–8.PubMedGoogle Scholar
  137. 137.
    Bashamboo A, Bignon-Topalovic J, Moussi N, McElreavey K, Brauner R. Mutations in the human ROBO1 gene in pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 2017;102(7):2401–6.PubMedGoogle Scholar
  138. 138.
    Diaczok D, Romero C, Zunich J, Marshall I, Radovick S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2008;93(11):4351–9.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Reynaud R, Jayakody SA, Monnier C, Saveanu A, Bouligand J, Guedj AM, et al. PROKR2 variants in multiple hypopituitarism with pituitary stalk interruption. J Clin Endocrinol Metab. 2012;97(6):E1068–73.PubMedGoogle Scholar
  140. 140.
    Keith B, Adelman DM, Simon MC. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci U S A. 2001;98(12):6692–7.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Webb EA, AlMutair A, Kelberman D, Bacchelli C, Chanudet E, Lescai F, et al. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies. Brain: J Neurol. 2013;136(Pt 10):3096–105.Google Scholar
  142. 142.
    Rainier S, Bui M, Mark E, Thomas D, Tokarz D, Ming L, et al. Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet. 2008;82(3):780–5.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Topaloglu AK, Lomniczi A, Kretzschmar D, Dissen GA, Kotan LD, McArdle CA, et al. Loss-of-function mutations in PNPLA6 encoding neuropathy target esterase underlie pubertal failure and neurological deficits in Gordon Holmes syndrome. J Clin Endocrinol Metab. 2014;99(10):E2067–75.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, et al. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015;52(2):85–94.PubMedGoogle Scholar
  145. 145.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12(1):17–23.PubMedGoogle Scholar
  146. 146.
    Tommiska J, Kansakoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, et al. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat Commun. 2017;8(1):1289.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev. 2010;31(6):845–915.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Stojilkovic SS, Bjelobaba I, Zemkova H. Ion channels of pituitary gonadotrophs and their roles in signaling and secretion. Front Endocrinol. 2017;8:126.Google Scholar
  149. 149.
    Xu R, Roh SG, Loneragan K, Pullar M, Chen C. Human GHRH reduces voltage-gated K+ currents via a non-cAMP-dependent but PKC-mediated pathway in human GH adenoma cells. J Physiol. 1999;520(Pt 3):697–707.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9.PubMedGoogle Scholar
  151. 151.
    Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, et al. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet. 2011;89(5):634–43.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol (Berlin, Germany). 2011;26(7):1039–56.Google Scholar
  153. 153.
    Lucas-Herald AK, Kinning E, Iida A, Wang Z, Miyake N, Ikegawa S, et al. A case of functional growth hormone deficiency and early growth retardation in a child with IFT172 mutations. J Clin Endocrinol Metab. 2015;100(4):1221–4.PubMedGoogle Scholar
  154. 154.
    Romano S, Maffei P, Bettini V, Milan G, Favaretto F, Gardiman M, et al. Alstrom syndrome is associated with short stature and reduced GH reserve. Clin Endocrinol (Oxf). 2013;79(4):529–36.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK

Personalised recommendations