Cryocoolers pp 83-98 | Cite as

Cryocooler Applications at Neutron Scattering Facilities

  • Oleg KirichekEmail author
Part of the International Cryogenics Monograph Series book series (ICMS)


A global shortage of helium gas can seriously jeopardise the scientific programmes of neutron scattering laboratories due to the use of cryogenic sample environment in the majority of the neutron scattering experiments. Recently developed cryogen-free technology allows a significant reduction or even a complete elimination of liquid helium consumption. Here we review the impact of the cryogen-free revolution on cryogenic equipment used at large neutron facilities, such as cryostats, dilution refrigerators, superconducting magnets and other cryogenic systems.



I am really grateful to Marsha Kirichek for proofreading this chapter’s draft.

I also greatly appreciate the really fruitful collaboration with colleagues from HZB, ILL, Diamond, LLB, PSI, FRMII, B. I. Verkin Institute, RIKEN, Oxford Instruments and AS Scientific.

I would also like to thank all involved in the ISIS sample environment cryogenic development projects, particularly Z. A. Bowden, R. Down, B. Evans, Jeff Keeping, Rob Major as well as the entire ISIS sample environment cryogenic section.


  1. 1.
    Bailey IF (2003) A review of sample environments in neutron scattering. Z Kristallogr 218:84Google Scholar
  2. 2.
    Kirichek O (2012) Impact of the cryogen free revolution on neutron scattering laboratories. Mod Phys Lett B 26:1230006ADSCrossRefGoogle Scholar
  3. 3.
    Kirichek O, Brown J, Adroja DT, Manuel P, Kouzmenko G, Bewley RI, Wotherspoon R (2012) New generation of cryogen free advanced superconducting magnets for neutron scattering experiments. J Phys Conf Ser 400:052013CrossRefGoogle Scholar
  4. 4.
    Windsor CG (1981) Pulsed neutron scattering. Taylor & Francis LTD, London, p 357Google Scholar
  5. 5.
    Colognesi D, Celli M, Cilloco E, Newport RJ, Parker SF, Rossi-Albertini V, Sacchetti F, Tomkinson J, Zoppi M (2002) TOSCA neutron spectrometer: the final configuration. Appl Phys A 74:S64ADSCrossRefGoogle Scholar
  6. 6.
    Bewley RI, Eccleston RS, McEwen KA, Hayden SM, Dove MT, Bennington SM, Treadgold JR, Coleman RLS (2006) MERLIN, a new high count rate spectrometer at ISIS. Phys B 385–386:1029ADSCrossRefGoogle Scholar
  7. 7.
    Feder T (2005) Government handling of helium gets report card: think again. Phys Dent Today 63(2010):28Google Scholar
  8. 8.
    Simkin VG (2001) Sample environment around the IBR-2 spectrometers. JINR Commun: 23Google Scholar
  9. 9.
    Bourgeat-Lami E, Chapuis JF, Chastagnier J, Demas S, Gonzales JP, Keay MP, Laborier JL, Lelievre-Berna E, Losserand O, Martin P, Melesi L, Petoukhov A, Pujol S, Ragazzoni JL, Thomas F, Tonon X (2006) Overview of the projects recently developed by the advanced neutron environment team at the ILL. Physica B 385–386:1303ADSCrossRefGoogle Scholar
  10. 10.
    Evans BE, Down RBE, Keeping J, Kirichek O, Bowden ZA (2008) Cryogen-free low temperature sample environment for neutron scattering based on pulse tube refrigeration. Meas Sci Technol 19:034018ADSCrossRefGoogle Scholar
  11. 11.
    Kirichek O, Evans BE, Down RBE, Bowden ZA (2009) Cryogen free low temperature sample environment for neutron scattering experiments. J Phys Conf Ser 150:012022CrossRefGoogle Scholar
  12. 12.
    Kirichek O, Carr P, Johnson C, Atrey M (2005) Nuclear magnetic resonance magnet actively cooled by pulse tube refrigerator. Rev Sci Instrum 76:055104ADSCrossRefGoogle Scholar
  13. 13.
    Tomaru T, Suzuki T, Haruyama T, Shintomi T, Yamamoto A, Koyama T, Li R (2004) Vibration analysis of Cryocoolers. Cryogenics 44:309ADSCrossRefGoogle Scholar
  14. 14.
    Wang C (2001) Helium liquefaction with a 4 K pulse tube cryocooler. Cryogenics 41:491ADSCrossRefGoogle Scholar
  15. 15.
    Will ME, Tanaeva IA, Li R, de Waele ATAM (2004) New rotary valves for pulse-tube refrigerators. Cryogenics 44:793ADSCrossRefGoogle Scholar
  16. 16.
    Brochier D (1977) ILL tech report 77/74Google Scholar
  17. 17.
    Kirichek O, Down RBE, Keeping J, Evans BE, Bowden ZA (2012) Cryogen free sample environment for neutron scattering experiments at ISIS. J Phys Conf Ser 340:012009CrossRefGoogle Scholar
  18. 18.
    Chapman CR, Evans BE, Dudman MP, Keeping J, Down RBE, Kirichek O, Bowden ZA (2011) Cryogen-free cryostat for neutron scattering sample environment. Cryogenics 51:146ADSCrossRefGoogle Scholar
  19. 19.
    Kirichek O, Foster J, Down RBE, Clapton D, Chapman CR, Garside J, Bowden ZA (2013) Top loading cryogen free cryostat for low temperature sample environment. J Low Temp Phys 171:737ADSCrossRefGoogle Scholar
  20. 20.
    Frossati G, Godfrin H, Hebral B, Schumacher G, Thoulouze D (1978) Proceedings of the ultralow temperatures symposium, Hakone, Japan (1977)Google Scholar
  21. 21.
    Frossati G (1978) J Phys Coll 39:1578Google Scholar
  22. 22.
    Bradley DI, Bradshaw TW, Guenault AW, Keith V, Locke-Scobie BG, Miller IE, Pickett GR, Pratt WP Jr (1982) A dilution refrigerator combining low base temperature, high cooling power and low heat leak for use with nuclear cooling. Cryogenics 22:296ADSCrossRefGoogle Scholar
  23. 23.
    Koike Y, Morii Y, Igarashi T, Kubota M, Hiresaki Y, Tanida K (1999) A dilution refrigerator using the pulse tube and GM hybrid cryocooler for neutron scattering. Cryogenics 39:579ADSCrossRefGoogle Scholar
  24. 24.
    Uhlig K (2002) 3He/4He dilution refrigerator with pulse-tube refrigerator precooling. Cryogenics 42:73ADSCrossRefGoogle Scholar
  25. 25.
    Uhlig K (2004) “Dry” dilution refrigerator with pulse-tube precooling. Cryogenics 44:53ADSCrossRefGoogle Scholar
  26. 26.
    Uhlig K (2008) 3He/4He dilution refrigerator with high cooling capacity and direct pulse tube pre-cooling. Cryogenics 48:511ADSCrossRefGoogle Scholar
  27. 27.
    Diallo SO, Azuah RT, Kirichek O, Taylor JW, Glyde HR (2009) Limits on Bose-Einstein condensation in confined solid 4He. Phys Rev B 80:060504ADSCrossRefGoogle Scholar
  28. 28.
    Glyde HR, Diallo SO, Azuah RT, Kirichek O, Taylor JW (2011) Bose-Einstein condensation in liquid 4He under pressure. Phys Rev B 83:100507ADSCrossRefGoogle Scholar
  29. 29.
    Glyde HR, Diallo SO, Azuah RT, Kirichek O, Taylor JW (2011) Atomic momentum distribution and Bose-Einstein condensation in liquid 4He under pressure. Phys Rev B 84:184506ADSCrossRefGoogle Scholar
  30. 30.
    Nucciotti A, Schaeffer D, Alessandria F, Ardito R, Barucci M, Risegari L, Ventura G, Bucci C, Frossati G, Olcese M, de Waard A (2008) Design of the cryogen-free cryogenic system for the CUORE experiment. Low Temp Phys 151:662ADSCrossRefGoogle Scholar
  31. 31.
    Prouve T, Godfrin H, Gianse C, Triqueneaux S, Ravex A (2007) Pulse-tube dilution refrigeration below 10 mK for astrophysics. J Low Temp Phys 148:909ADSCrossRefGoogle Scholar
  32. 32.
    Batey G, Buehler M, Cuthbert M, Foster T, Matthews AJ, Teleberg G, Twin A (2009) Integration of superconducting magnets with cryogen-free dilution refrigerator systems. Cryogenics 49:727ADSCrossRefGoogle Scholar
  33. 33.
    Yayama H, Yoshimura M (2009) Installation of a superconducting magnet in a cryogen-free dilution refrigerator. J Phys Conf Ser 150:012056CrossRefGoogle Scholar
  34. 34.
    Cho A (2009) Helium-3 shortage could put freeze on low-temperature research. Science 326:778ADSCrossRefGoogle Scholar
  35. 35.
    Meissner M, Smeibidl P (2001) Neutron scattering at BENSC under extreme conditions: up to 17 tesla and down to 25mK. Neutron News 12:12CrossRefGoogle Scholar
  36. 36.
    Katano S, Minakawa N, Metoki N, Osakabe T, Suzuki J, Koike Y, Ishii Y (2002) Liquid-He-free 10T superconducting magnet for neutron scattering. Appl. Phys A 74:S270ADSCrossRefGoogle Scholar
  37. 37.
    Pooke DM, Chamritski V, Fee M, Gibson S, King BT, Tallon JL, Meissner M, Feyerherm R, Olsen SR, Kennedy SJ, Robinson RA (2009) HTS 5 Tesla synchrotron and neutron beamline magnets. IEEE Trans Appl Supercond 19:1372ADSCrossRefGoogle Scholar
  38. 38.
    Down RBE, Kouzmenko G, Kirichek O, Wotherspoon R, Brown J, Bowden ZA (2010) Cryogen free high magnetic field sample environment for neutron scattering. J Phys: Conf Ser 251:012092Google Scholar
  39. 39.
    Lelievre-Berna E, Brown J, Jones H, Kousmenko G, Losserand O, Pickering P, Tonon X, Turc S (2010) ILL preprintGoogle Scholar
  40. 40.
    Brown FJ (2010) Aspects of superconducting magnet design for neutron scattering sample environments. J Phys Conf Ser 251:012093CrossRefGoogle Scholar
  41. 41.
    Kirichek O, Down RBE, Kouzmenko G, Keeping J, Bunce D, Wotherspoon R, Bowden ZA (2010) Operation of superconducting magnet with dilution refrigerator insert in zero boil-off regime. Cryogenics 50:666ADSCrossRefGoogle Scholar
  42. 42.
    Oliver E, Evans BE, Chowdhury M, Major R, Kirichek O, Bowden A (2008) Novel testing chamber for neutron scattering measurements of bulk stress in engineering components at cryogenic temperatures. Meas Sci Technol 19:034019ADSCrossRefGoogle Scholar
  43. 43.
    Tao K, Wall JJ, Li H, Brown DW, Vogel SC, Choo H (2006) In situ neutron diffraction study of grain-orientation-dependent phase transformation in 304L stainless steel at a cryogenic temperature. J Appl Phys 100:123515ADSCrossRefGoogle Scholar
  44. 44.
    Tsuchiya Y, Suzuki H, Umeno T, Machiya S, Osamura K (2010) Development of a cryogenic load frame for a neutron diffractometer. Meas Sci Technol 21:025904ADSCrossRefGoogle Scholar
  45. 45.
    Kirichek O, Timms JD, Kelleher JF, Down RBE, Offer CD, Kabra S, Zhang SY (2017) Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300K. Rev Sci Instrum 88:025103ADSCrossRefGoogle Scholar
  46. 46.
    Kirichek O (2017) Sample environment for neutron scattering experiments at ISIS. J Neutron Res 19:57–63CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Rix JE, Weber JKR, Santodonato LJ, Hill B, Walker LM, McPherson R, Wen-zei J, Hammons SE, Hodges J, Rennich M, Volin KJ (2007) Automated sample exchange and tracking system for neutron research at cryogenic temperatures. Rev Sci Instrum 78:013907ADSCrossRefGoogle Scholar
  49. 49.
    Seeger PA, Daemen LL, Larese JZ (2009) Resolution of VISION, a crystal-analyzer spectrometer. Nucl Instr Meth Phys Res Sec A 604:719ADSCrossRefGoogle Scholar
  50. 50.
    Harrison A, Mart’nez JL, Wagner R (2010) Renaissance: a decade of development at ILL. Neutron News 21:11CrossRefGoogle Scholar
  51. 51.
    Rodrigues JA, Adler DM, Brand PC, Broholm C, Cook JC, Brocker C, Hammond R, Huang Z, Hundertmark P, Lynn JW, Maliszewskyi NC, Moyer J, Orndorff J, Pierce D, Pike TD, Scharfstein G, Smee SA, Vilaseca R (2008) MACS-A new high intensity cold neutron spectrometer at NIST. Meas Sci Technol 19:034023ADSCrossRefGoogle Scholar
  52. 52.
    Down RBE, Ramirez-Cuesta AJ, Major RA, Keeping J, Rudić S, Kirichek O (2014) Cryogenic sample environment on TOSCA. J Phys Conf Ser 554:012007CrossRefGoogle Scholar
  53. 53.
    Abernathy DL, Stone MB, Loguillo MJ, Lucas MS, Delaire O, Tang X, Lin JYY, Fultz B (2012) Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Rev Sci Instrum 83:015114ADSCrossRefGoogle Scholar
  54. 54.
    Perring TG, Taylor AD, Osborn R, Mc Paul D, Boothroyd AT, Aeppli G (1994) Proceedings of ICANS XII I-60; RAL report 94-025Google Scholar
  55. 55.
    Lelivre-Berna E, Bourgeat-Lami E, Gibert Y, kernavanois N, Locatelli J, Mary T, Pastrello G, Petukhov A, Pujol S, Rouques R (2005) Advances in spherical neutron polarimetry with Cryopad. Physica B 356:141ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryDidcotUK

Personalised recommendations