Sustainable Production of Chitosan

  • Bożena TyliszczakEmail author
  • Anna Drabczyk
  • Sonia Kudłacik-Kramarczyk
  • Agnieszka Sobczak-Kupiec
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 198)


The paper presents characteristic, applications as well as worldwide demand for chitosan and the resulting development of the methodology of obtaining this biopolymer. Currently, chitosan is one of the leading polysaccharides on the polymer market. This results from its properties such as biodegradability, biocompatibility, antimicrobial activity, adsorption capability and chelating properties. Therefore this polysaccharide finds application in a wide variety of areas such as medicine and related fields, environmental protection, food science or agriculture. Due to the growing interest in this biopolymer—worldwide demand for chitin (chitosan is its deacetylated derivative) in 2015 was 60,000 t—new sources of chitosan as well as new methods of its extraction are currently a research subject of many scientists. An important issue is a development of methodologies in accordance with recommendations of the sustainable production trend, i.e. considering such issues as e.g. reduction in the energy consumption, reuse and recycle of reagents or reduction in the amount of generated waste. Therefore many studies are currently carried out to obtain chitosan using methods that will have the least impact on the environment.


Sustainable production Chitosan Clean production 


  1. 1.
    Alieh-Ali-Kimi, D., Hamblin, R.M.: Chitin and chitosan and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 4(3), 411–427 (2016)Google Scholar
  2. 2.
    Abdel-Rahman, R.M., Hrdina, R., Abdel-Mohsen, A.M., Fouda, M.M.G., Soliman, A.Y., Mohamed, F.K., Mohsin, K., Pinto, T.D.: Chitin and chitosan from Brazilian Atlantic Coast: isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107–120 (2015)CrossRefGoogle Scholar
  3. 3.
    Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., Nasri, M.: Infuence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol. 185, 57–63 (2014)CrossRefGoogle Scholar
  4. 4.
    Ravi Kumar, M.N.V., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, J.: Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104(12), 6017–6084 (2004)CrossRefGoogle Scholar
  5. 5.
    Inamdar, N.N., Mourya, V.:Chitosan and low molecular weight chitosan: biological and biomedical applications. In: Tiwari, A. and Nordin, A.N. (eds), Advanced Biomaterials and Biodevices, Scrivener Publishing LLC (2014)Google Scholar
  6. 6.
    Sayari, N., Sila, A., Abdelmalek, B.E., Abdallah, R.B., Ellouz-Chaabouni, S., Bougatef, A., Balti, R.: Chitin and chitosan from the Norway lobster by-products: antimicrobial and anti-proliferative activities. Int. J. Biol. Macromol. 87, 163–171 (2016)CrossRefGoogle Scholar
  7. 7.
    Al-Manhel, A.J., Al-Hilphy, A.R.S., Niamah, A.K.: Extraction of chitosan, characterisation and its use for water purification. J. Saudi Soc. Agric. Sci. 17, 186–190 (2018)Google Scholar
  8. 8.
    Teli, M.D., Sheikh, J.: Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int. J. Biol. Macromol. 50, 1195–1200 (2012)CrossRefGoogle Scholar
  9. 9.
    Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., de la Caba, K.: Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 105, 1358–1368 (2017)CrossRefGoogle Scholar
  10. 10.
    Li, X., Feng, X., Yang, S., Fu, G., Wang, T., Su, Z.: Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr. Polym. 79(3), 493–499 (2010)CrossRefGoogle Scholar
  11. 11.
    Chien, R.-C., Yen, M.-T., Mau, J.-L.: Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crabshells. Carbohydr. Polym. 138, 259–264 (2015)CrossRefGoogle Scholar
  12. 12.
    Mukherjee, D., Azamthulla, Md, Santhosh, S., Dath, G., Ghosh, A., Natholia, R., Anbu, J., Teja, V.B., Muzammil, K.M.: Development and characterization of chitosan-based hydrogel as wound dressing materials. J Drug Deliv Sci Technol 46, 498–510 (2018)CrossRefGoogle Scholar
  13. 13.
    Hamedi, H., Moradi, S., Hudson, S.M., Tonelli, A.E.: Chitosan based hydrogels ad their applications for drug delivery in wound dressings: a review. Carbohydr. Polym. 199, 445–460 (2018)CrossRefGoogle Scholar
  14. 14.
    Mohandas, A., Deepthi, S., Biswas, R., Jayakimar, R.: Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater. 3(3), 267–277 (2018)CrossRefGoogle Scholar
  15. 15.
    Lin, L., Xue, L., Duraiarasan, S., Haiying, C.: Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life 17, 134–141 (2018)CrossRefGoogle Scholar
  16. 16.
    Riaz, A., Lei, S., Akhtar, H.M.S., Wan, P., Chen, D., Jabbar, S., Abid, M., Hashim, M.M., Zeng, X.: Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 114, 547–555 (2018)CrossRefGoogle Scholar
  17. 17.
    El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., Lahsini, A.: Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 120, 1181–1189 (2018)CrossRefGoogle Scholar
  18. 18.
    Bassi, R., Prasher, S.O.: Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep. Sci. Technol. 35(4), 547–560 (2000)CrossRefGoogle Scholar
  19. 19.
    Brigham, C.J.: Chitin and chitosan: sustainable, medically relevant biomaterials. Int. J. Biotechnol. Wellness Ind. 6, 41–47 (2017)CrossRefGoogle Scholar
  20. 20.
    Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Sobczak-Kupiec, A.: Preparation, characterization, and in vitro cytotoxicity of chitosan hydrogels containing silver nanoparticles. J. Biomater. Sci. Polym. Ed., Polym. Ed. 28(15), 1665–1676 (2017)CrossRefGoogle Scholar
  21. 21.
    Tyliszczak, B., Kudłacik-Kramarczyk, S., Drabczyk, A., Sobczak-Kupiec, A.: Synthesis, characterization, and in vitro cytotoxicity of chitosan hydrogels containing nanogold. Int. J. Polym. Mater. Poly. Biomate.
  22. 22.
    Liu, L., He, Y., Shi, X., Gao, H., Wang, Y., Lin, Z.: Phosphocreatine-modified chitosan porous scaffolds promote mineralization and osteogenesis in vitro and in vivo. Appl. Mater. Today 12, 21–33 (2018)CrossRefGoogle Scholar
  23. 23.
    Sethy, T.R., Sahoo, P.K.: Highly toxic Cr (VI) adsorption by (chitosan-g-PMMA)/silica bionanocomposite prepared via emulsifier-free emulsion polymerisation. Int. J. Biol. Macromol. (2018)CrossRefGoogle Scholar
  24. 24.
    Demir, A.K., Elcin, A.E., Elcin, Y.M.: Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Mater. Sci. Eng. C. Mater. Biol. Appl. 89, 8–14 (2018)CrossRefGoogle Scholar
  25. 25.
    Vashist, S.K.: Chitosan: growing importance in biomedical and bioanalytical sciences. Austin. J. Nanomed. Nanotechnol. 2(4), 1024 (2014)Google Scholar
  26. 26.
    Luo, Z., Dubey, R., Gunasekaran, A., Childe, S.J., Papadopopoulos, T., Hazen, B., Roubaud, D.: Sustainable production framework for cement manufacturing firms: a behavioural perspective. Renew. Sust. Energ. Rev. 78, 495–502 (2017)CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
    Varshosaz, J.: The promise of chitosan microspheres in drug delivery systems. Expert Opin. Drug Deliv. 4(3), 263–273 (2007)CrossRefGoogle Scholar
  30. 30.
    Kumari, S., Annamareddy, S.H.K., Abanti, S., Rath, P.K.: Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol. 104, 1697–1705 (2017)CrossRefGoogle Scholar
  31. 31.
    Tyliszczak, B., Drabczyk, A., Kudłacik, S., Sobczak-Kupiec, A.: Beetosan®-Based hydrogels modified with natural substances. J. Renew. Mater. 5(3–4), 174–179 (2017)CrossRefGoogle Scholar
  32. 32.
    Nemtsev, S.V., Zueva, O.Y., Khismatullin, M.R., Albulov, A.I., Varlamov, V.P.: Isolation of chitin and chitosan form honeybees. Appl. Biochem. Microbiol. 40(1), 39–43 (2004)CrossRefGoogle Scholar
  33. 33.
    Hamdi, M., Hammami, A., Hajji, S., Jridi, M., Nasri, M., Nasri, R.: Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int. J. Biol. Macromol., 101, 455–463 (2017)CrossRefGoogle Scholar
  34. 34.
    Samar, M.M., El-Kalyoubi, M.H., Khalaf, M.M., El-Razik, M.M.A.: Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. 58(1), 33–41 (2013)Google Scholar
  35. 35.
    Srinivasan, H., Velayutham, K., Ravichandran, R.: Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cellline, PA–1. Int. J. Biol. Macromol. 107, 662–667 (2018)CrossRefGoogle Scholar
  36. 36.
    Ghorbel-Bellaaj, O., Younes, I., Maalej, H., Hajji, S., Nasri, M.: Chitin extraction from shrimp shell waste using Bacillus bacteria. Int. J. Biol. Macromol. 51, 1196–1201 (2012)CrossRefGoogle Scholar
  37. 37.
    Kumari, S., Rath, P., Kumar, A.S.H., Tiwari, T.N.: Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ. Technol. Innov. 3, 77–85 (2015)CrossRefGoogle Scholar
  38. 38.
    Khan, F.I., Rahman, S., Queen, A., Ahamad, S., Ali, S., Kim, J., Hassan, M.I.: Implications of molecular diversity of chitin and its derivatives. Appl. Microbiol. Biotechnol. 101, 3513–3536 (2017)CrossRefGoogle Scholar
  39. 39.
    Lamarque, G., Cretenet, M., Viton, C., Domard, A.: New route of deacetylation of α—and β—Chitins by means of freeze—pump out—thaw cycles. Biomacromol 6, 1380–1388 (2005)CrossRefGoogle Scholar
  40. 40.
    Tahtat, D., Uzun, C., Mahlous, M., Guven, O.: Beneficial effect of gamma irradiation on the N-deacetylation of chitin to form chitosan. Nucl. Instrum. Methods Phys. Res. B. 265, 425–428 (2007)CrossRefGoogle Scholar
  41. 41.
    Duong, N.T.H., Nghia, N.D.: Effects of low-frequency ultrasound on heterogeneous deacetylation of chitin. Int. J. Biol. Macromol. 104, 1604–1610 (2017)CrossRefGoogle Scholar
  42. 42.
    Gagne, N., Simpson, B.K.: Use of pyrolytic enzymes to facilitate the recovery of chitin from shrimp wastes. Food Biotechnol. 7, 253–263 (1993)CrossRefGoogle Scholar
  43. 43.
    Gamal, R.F., El-Tayeb, T.S., Raffat, E.I., Ibrahim, H.M.M., Bashandy, A.S.: Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma radiation on production of low molecular weight chitosan. Int. J. Biol. Macromol. 91, 598–608 (2016)CrossRefGoogle Scholar
  44. 44.
    Younes, I., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., Nasri, M.: Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int. J. Biol. Macromol., 69, 489–498 (2014)CrossRefGoogle Scholar
  45. 45.
    Vazquez, J.A., Noriega, D., Ramos, P., Valcarcel, J., Novoa-Carballal, R., Pastrana, L., Reis, R.L., Perez-Martin, R.I.: Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydr. Polym. 174, 262–272 (2017)CrossRefGoogle Scholar
  46. 46.
    Zhang, H., Jin, Y., Deng, Y., Wang, D., Zhao, Y.: Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr. Res. 362, 13–20 (2012)CrossRefGoogle Scholar
  47. 47.
    Younes, I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M., Nasri, M.: Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem. 47, 2032–2039 (2012)CrossRefGoogle Scholar
  48. 48.
    Sedaghat, F., Yousefzadi, M., Toiserkani, H., Najafipour, S.: Chitin from penaeus merguiensis via microbial fermentation processing and antioxidant activity. Int. J. Biol. Macromol. 82, 279–283 (2016)CrossRefGoogle Scholar
  49. 49.
    Hongkulsup, C., Khutoryanskiy, V., Niranjan, K.: Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei). J. Chem. Technol. Biotechnol. 91(5), 1250–1256 (2016)CrossRefGoogle Scholar
  50. 50.
    Sadighara, P., Moghadam, H.T., Eskandari, S., Salehi, A.: Optimization of extraction of chitosan and carotenoids from shrimp waste. Int. J. Fish. Aquat. Stud. 2(5), 36–38 (2015)Google Scholar
  51. 51.
    Abdel-Gawad, K.M., Hiffney, A.F., Fawzy, M.A., Gomaa, M.: Technology optimization of chitosan production from Aspergillus Niger biomass and its functional activities. Food Hydrocoll. 63, 593–601 (2017)CrossRefGoogle Scholar
  52. 52.
    Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M.: Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33(4), 379–403 (2013)CrossRefGoogle Scholar
  53. 53.
    Tasar, O.C., Erdal, S., Taskin, M.: Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int. J. Biol. Macromol. 89, 428–433 (2016)CrossRefGoogle Scholar
  54. 54.
    Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Guha, A.K.: Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. Int. J. Biol. Macromol. 42, 120–126 (2008)CrossRefGoogle Scholar
  55. 55.
    Zhao, L., Xia, W.: Stainless steel membrane UF coupled with NF process for the recovery of sodium hydroxide from alkaline wastewater in chitin processing. Desalination 249, 774–780 (2009)CrossRefGoogle Scholar
  56. 56.
    Zhao, L., Xia, W., Zhao, H.: Cost model for chitin production alkali wastewater recovery by couple-membrane filtration. Desalin. Water Treat 28(1–3), 202–210 (2011)CrossRefGoogle Scholar
  57. 57.
    Nessa, F., Masum, SMd, Asaduzzaman, M., Roy, S.K., Hossain, M.M., Jahan, M.S.: A process for the preparation of chitin and chitosan from prawn shell waste. Bangladesh J. Sci. Ind. Res. 45(4), 323–330 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bożena Tyliszczak
    • 1
    Email author
  • Anna Drabczyk
    • 2
  • Sonia Kudłacik-Kramarczyk
    • 2
  • Agnieszka Sobczak-Kupiec
    • 3
  1. 1.Department of Chemistry and Technology of PolymersCracow University of TechnologyCracowPoland
  2. 2.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyCracowPoland
  3. 3.Institute of Inorganic Chemistry and TechnologyCracow University of TechnologyCracowPoland

Personalised recommendations