Advertisement

Environmental Assessment of the Impact of Tars on the Territory of the Rozdil State Mining and Chemical Enterprise “Sirka” (Ukraine)

  • Volodymyr PohrebennykEmail author
  • Elvira Dzhumelia
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 198)

Abstract

Acid tars belong to the large-tonnage waste of the oil industry, the utilization of which is a rather complex scientific and technological problem. The purpose of this work is an environmental assessment of the impact of tars on the territory of the Rozdil State Mining and Chemical Enterprise (SMCE), “Sirka”, anthropogenic load and the effectiveness of management actions to reduce the negative effects of pollution of the territory. All industrial wastes of the enterprise are sources of environmental hazard. They negatively affect not only soils and water objects of the enterprise territory but also neighboring territories, as well as the Dniester River. The main reason for this pollution is the non-performance of the project on maintaining ecological balance, monitoring, reclamation of the territory of the land due to insufficient funding for the implementation of projects. In this regard, sources of pollution (phosphogypsum, oil tars, lump sulfur, sulfur ore tails, solid waste) constantly affect the environment and over the years the situation remains dangerous.

Keywords

Environmental assessment Oil tars Reclamation Soil pollution Water pollution 

References

  1. 1.
    Sang-Hwan, L., Wonhyun, J., Hun-Jae, Y. et al.: Reclamation of mine-degraded agricultural soils from metal mining: lessons from 4 years of monitoring activity in Korea, pp. 1–7. Springer Berlin, Heidelberg (2017)Google Scholar
  2. 2.
    Rudko, G., Shkitsa, L.: Ecological consequences of the activity of Western Ukraine mining complexes. Rocznik AGH, Wiertnictwo Nafta Gaz, Poland, T. 19(2), 415–418 (2002)Google Scholar
  3. 3.
    Sun, J., Geng, C.L., Zhang, Z.T., Wang, X.T.: Present situation of comprehensive utilization technology of industrial solid waste. Mater. Rev. China 11(2), 105–109 (2012)Google Scholar
  4. 4.
    Chapman, P.M., Wang, F., Janssen, C.R., Goulet, R.R., Kamunde, C.N.: Conducting ecological risk assessments of inorganic metals and metalloids: current status. Human Ecol. Risk Assess. 9(4), 641–697 (2003)CrossRefGoogle Scholar
  5. 5.
    Gupta, D, Ghosh, R, Mitra, A.K., Roy, S., Sarkar, M., Chowdhury, S., Bhowmik, A., Mukhopadhyay, U., Maskey, S., Ro, C.U.: Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis. J. Air Waste Manag. Assoc. 61(11), 1102–1114 (2011)CrossRefGoogle Scholar
  6. 6.
    Li, Z., Hu, B.: Perceived health risk, environmental knowledge, and contingent valuation for improving air quality: new evidence from the Jinchuan mining area in China. Econ. Hum. Biol. 1, 54–68 (2018)CrossRefGoogle Scholar
  7. 7.
    Taras, U.M.: Problems of rehabilitation of sulfur quarry around activity of Yavoriv State Mining and Chemical Enterprise “Sirka”. Sci. J. UNFU of Ukraine, Ukraine 23(2), 154–158 (2013)Google Scholar
  8. 8.
    Chang Shu, Kochan, O.: Method of thermocouples self verification on operation place. Sens. Transducers, 160(12), 55–61 (2013)Google Scholar
  9. 9.
    Kłonica, M., Kuczmaszewski, J.: Determining the value of surface free energy on the basis of the contact angle. Adv. Sci. Technol. Res. J. 11(1), 66–74 (2017)CrossRefGoogle Scholar
  10. 10.
    Odon, A.: Modelling and simulation of the pyroelectric detector using MATLAB/Simulink. Meas. Sci. Rev. 10(6), 195–199 (2010)CrossRefGoogle Scholar
  11. 11.
    Nieslony, P., Krolczyk, G.M., Wojciechowski, S., Chudy, R., Zak, K., Maruda, R.W.: Surface quality and topographic inspection of variable compliance part after precise turning. Appl. Surf. Sci. 434, 91–101 (2018)CrossRefGoogle Scholar
  12. 12.
    Krolczyk, G.M., Maruda, R.W., Krolczyk, J.B., Nieslony, P., Wojciechowski, S., Legutko, S.: Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement 121, 225–239 (2018)CrossRefGoogle Scholar
  13. 13.
    Ishchenko, V.: Soil contamination by heavy metal mobile forms near landfill. Int. J. Environ. Waste Manage. 20(1), 66–74 (2017)CrossRefGoogle Scholar
  14. 14.
    Kochan, O., Sapojnyk, H., Kochan, R.: Temperature field control method based on neural network. In: Proceedings of the IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS’2013), pp. 21–25. Berlin, Germany (2013)Google Scholar
  15. 15.
    Petruk, V., Kvaternyuk, O., Kvaternyuk, S., Mokanyuk, O., Yekenina, L., Wojcik, W., Romaniuk, R. S., Baglan, I.: Methods and means of measuring control and diagnostics of biological tissues in vivo based on measurements of color coordinates and multispectral image. In: Proceedings of SPIE, Optical Fibers and Their Applications, vol. 9816, 98161H (17 December 2015), 98161H-1– 98161H-5 (2015)Google Scholar
  16. 16.
    Martsenyuk, V., Petruk,V.G., Kvaternyuk, S.M., Pohrebennyk, V.D., Bezusiak, Y.I., Petruk, R.V., Klos-Witkowska, A.: Multispectral control of water bodies for biological diversity with the index of phytoplankton. 16th International Conference on Control, Automation and Systems (ICCAS 2016), Oct. 16–19, 2016 in HICO, pp. 988–993. Gyeongju, Korea (2016)Google Scholar
  17. 17.
    Pepłońska, B., Szeszenia-Dabrowska, N.: Occupational diseases in Poland, 2001. Int. J. Occup. Med. Environ. Health 15(4), 337–345 (2002)Google Scholar
  18. 18.
    Rybicka, E.H.: Impact of mining and metallurgical industries on the environment in Poland. Appl. Geochem. 11(1–2), 3–9 (1996)CrossRefGoogle Scholar
  19. 19.
    Sun, J., Geng, C.L., Zhang, Z.T., Wang, X.T.: Present situation of comprehensive utilization technology of industrial solid waste. Mater. Rev. 11(2), 105–109 (2012)Google Scholar
  20. 20.
    Gajdyn, A.M., Kovalyshyn, V.V., Saliuk, I.V.: Project of reclamation of disturbed lands, the basic project decisions of restoring the ecological balance of the landscape through the phased withdrawal capacity of careers and their liquidation. Ukraine, Lviv (1999)Google Scholar
  21. 21.
    Lomnytska, Ya.F., Vasylechko, V.O., Chykhrii, S.I.: Composition and chemical control of environmental objects. Lviv: Novyi Svit-2000, Ukraine (2011)Google Scholar
  22. 22.
    Pohrebennyk, V., Dzhumelia, E., Korostynska, O., Mason, A., Cygnar M.: Technogenic pollution of soil due to mining and chemical enterprises. In: 16th International Multidisciplinary Scientific GeoConference SGEM, vol. 2, pp. 363–370. Albena, Bulgaria, (2016)Google Scholar
  23. 23.
    Pohrebennyk, V., Mitryasova, O., Dzhumelia, E., Kochanek, A.: Evaluation of surface water quality in mining and chemical industry. In: 17th International Multidisciplinary Scientific GeoConference SGEM, vol. 17/issue 51, pp. 425–433. Albena, Bulgaria (2017)Google Scholar
  24. 24.
    Pohrebennyk, V., Karpinski, M., Dzhumelia, E., Klos-Witkowska, A., Falat, P.: Water bodies pollution of the mining and chemical enterprise.In: 18th International multidisciplinary scientific geoconference SGEM 2018 (Albena, 30 June–9 July, 2018), vol. 18, issue 5.2, pp. 1035–1042. Ecology, Economics, Education and Legislation, Ecology and Environmental Protection (2018)Google Scholar
  25. 25.
    Trunova, I.O.: Environmental assessment of soil contamination in area of dump of phosphogypsum JSC “Sumykhimprom” by heavy metals. Herald of Sumy National University, Ukraine 5(89), 135–138 (2006)Google Scholar
  26. 26.
    Pohrebennyk, V., Mitryasova, O., Kłos-Witkowska, A., Dzhumelia, E.: The role of monitoring the territory of industrial mining and chemical complexes at the stage of liquidation. In: 17th International Multidisciplinary Scientific GeoConference SGEM, vol. 17/issue 33, pp. 383–390. Vienna, Austria (2017)Google Scholar
  27. 27.
    Pohrebennyk, V., Dzhumelia, E.: Evaluation of impact of mining and chemical enterprise on ecological state of the water environment. Water Security: Monograph, Mykolaiv: PMBSNU—Bristol: UWE, pp. 155–169 (2016)Google Scholar
  28. 28.
    Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F., Monroy, M.: Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico, vol. 152/issues 1–4, pp. 129–152. Water, Air, and Soil Pollution, USA (2004)CrossRefGoogle Scholar
  29. 29.
    Malyk, YuO, Maliovanyi, M.S., Petrushka, I.M., Malyk, NYu.: Improvement environmental safety deep processing of phosphogypsum in sulfuric acid and ammonium nitrate. Herald of Lviv Polytechnik National Uni. Chem. Substances Technol. Appl. 497, 122–124 (2004)Google Scholar
  30. 30.
    Novosad, P.V.: Using phosphogypsum of Rozdil in production of dry building mixes. Herald of Lviv Polytechnik National Uni. Theory Practice Building 755, 276–280 (2013)Google Scholar
  31. 31.
    Favas, P., Pratas, J.: Characterization of acid mine drainage at the regoufe mine, Arouca geopark, Northern Portugal. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, www.sgem.org, SGEM2017 Conference Proceedings. Albena, Bulgaria, 29 June–5 July, vol. 17, issue 51, pp. 205–210 (2017)
  32. 32.
    Wenshen, L., Xiaowen, G., Jie, L.: Bitumen recovery from Indonesian oil sands using ASP (alkali, surfactant and polymer) agent. China Petroleum Processing Petrochemical Technol. 20, 110–115 (2018)Google Scholar
  33. 33.
    Moein, Choobineh: Salman, Mohagheghi: sustainable industrial plants: energy-efficient asset-aware and waste-averse. IEEE Trans. Ind. Appl. 54(3), 1966–1974 (2018)CrossRefGoogle Scholar
  34. 34.
    Pohrebennyk, V., Dzhumelia, E.: Environmental problems of soils during the liquidation rozdil state mining and chemical enterprise “Sirka”. International Youth Science Forum “Litteris et Artibus”, Lviv, Ukraine, 480–481 (November 24–26, 2016)Google Scholar
  35. 35.
    Bradshaw, A.D.: Restoration of mined lands—using natural processes. Ecol. Eng. 8, 255–269 (1997)CrossRefGoogle Scholar
  36. 36.
    Krzaklewski, W.: Recultywacja obszarow pogorniczych i poprzemyslowych. Przemiany srodowiska naturalnego a ekorozwoj. Red. Macieja J.Kotarby, Krakow: Geosfera, 85–104 (2001)Google Scholar
  37. 37.
    Styskal, O., Ishchenko, V., Petruk, R., Pohrebennyk, V., Kochanek, A.: Assessment of chlorinated water impact on phytoplankton. In: 16th International Multidisciplinary Scientific Geoconferences & Expo SGEM 2016. Conferences Proceeding, Vienna, Book 3, vol. 3, pp. 374–381. Water Resources, Forest, Marine and Ocean Ecosystems (2016)Google Scholar
  38. 38.
    Donnadieu, J.P., Vincent, A., Rosset, O., Guevara, C.: Methodologie de reamenagement d’un site minier ou carrier. Memento des Mines et Carrieres 3, 481–490 (1997)Google Scholar
  39. 39.
    Palarski, J.: Ryzyko dla srodowiska w procesie likwidacji zakladow gorniczych. Miesiecznik WUG N4, 23–28 (2002)Google Scholar
  40. 40.
    Pohrebennyk, V., Cygnar, M., Korostynska, O., Mason, A. Operative control parameters of water environment. In: 9th International Conference on Developments in eSystems Engineering (DeSE). Proceedings, 1st August–1st September 2016, Liverpool John Moores university, Al Khawarizimi international college, Leeds Backett University, pp. 335–340 (2016)Google Scholar
  41. 41.
    Ishchenko, V.: Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste. J. Mater. Cycles Waste Manage. 20(3), 1892–1900 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Schults, D.: Recultivation of mining waste dumps in the Ruhn Area. Germany. Water Air Soil Pollut. 91(1/2), 89–98 (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Ecological Safety and Nature Protection ActivityLviv Polytechnic National UniversityLvivUkraine
  2. 2.Technical Institute, State Higher Technical School in Nowy SaczNowy SaczPoland

Personalised recommendations