Advertisement

Environmental Pollution with Heavy Metals: Case Study of the Household Waste

  • Vitalii IshchenkoEmail author
  • Igor Vasylkivskyi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 198)

Abstract

This study is dedicated to the assessment of the heavy metal pollution of environment through analysis of sources of heavy metals and the measuring their concentrations in leachate and soil near landfills. Main sources of heavy metals in the household waste are identified. The environmental pollution with some heavy metals (Cr, Pb, Cd, Ni) was assessed. Soil contamination by heavy metals near the landfills was analyzed by measuring their concentrations in the soil on different distances from the landfill. The limit exceeding was not observed for any heavy metal. Only cadmium has demonstrated a strong correlation between the distance from the landfill and the concentration. The research also confirms depending on migration of heavy metals on the landfill conditions and on its compliance with requirements. Also, concentrations of the heavy metals are defined in the leachate collected using the landfill-simulating reactors. Content of heavy metals was identified as high. Higher concentrations are found where more organic fraction is present in the waste. There are conditions inside the reactors, especially acidity, which are crucial at the early stages. Further, a significant impact can be caused by unequal distribution of heavy metals in the waste body. Due to accelerated water regime in the reactors, concentrations of the heavy metals in a landfill leachate are predicted up to 50–55 years. Forecast shows multiple (2–18 times) exceeding the allowable concentrations of all heavy metals, even after long-time landfill usage.

Keywords

Heavy metals Pollution Household waste Landfill-simulating reactors Landfill 

References

  1. 1.
    Vergara, S., Tchobanoglous, G.: Municipal solid waste and the environment: a global perspective. Annu. Rev. Environ. Resour. 37, 277–309 (2012)CrossRefGoogle Scholar
  2. 2.
    Kasassi, A., Rakimbei, P., Karagiannidis, A., Zabaniotou, A., Tsiouvaras, K., Nastis, A., Tzafeiropoulou, K.: Soil contamination by heavy metals: measurements from a closed unlined landfill. Bioresour. Technol. 99, 8578–8584 (2008)CrossRefGoogle Scholar
  3. 3.
    Kanmani, S., Gandhimathi, R.: Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 3, 193–205 (2013)CrossRefGoogle Scholar
  4. 4.
    Liu, C., Cui, J., Jiang, G., Chen, X., Wang, L., Fang, C.: Soil heavy metal pollution assessment near the largest landfill of China. Soil Sediment Contam. 22(4), 390–403 (2013)CrossRefGoogle Scholar
  5. 5.
    Pohrebennyk, V., Dzhumelia, E., Mason, A., Cygnar, M.: X-Ray fluorescent method of heavy metals detection in soils of mining and chemical enterprises. In: Proceedings of 9th International Conference on Developments in eSystems Engineering (DeSE), pp. 323–328 (2017)Google Scholar
  6. 6.
    Pohrebennyk, V., Dzhumelia, E., Korostynska, O., Mason, A., Cygnar, M.: Technogenic pollution of soil due to mining and chemical enterprises. In: Proceedings of 16th International Multidisciplinary Scientific Geoconferences & Expo SGEM 2016, vol. II, issue 5, pp. 363–370 (2016)Google Scholar
  7. 7.
    Ishchenko, V., Pohrebennyk, V., Borowik, B., Falat, P., Shaikhanova, A.: Toxic substances in hazardous household waste. In: Proceedings of International Multidisciplinary Scientific Geoconference SGEM 2018, vol. 18, issue 4.2, pp. 223–230 (2018)Google Scholar
  8. 8.
    Ishchenko,V., Pohrebennyk, V., Kozak, Y., Kochanek, A., Politylo, R.: Assessment of batteries influence on living organisms by bioindication method. In: Proceedings of 16th International Multidisciplinary Geoconference SGEM 2016, vol. II, issue 5, pp. 85–92 (2016)Google Scholar
  9. 9.
    Ishchenko, V.: Soil contamination by heavy metal mobile forms near landfill. Int. J. Environ. Waste Manage. 20(1), 66–74 (2017)CrossRefGoogle Scholar
  10. 10.
    Petruk, R., Pohrebennyk, V., Kvaternyuk, S., Bondarchuk, O., Cygnar, M.: Multispectral television monitoring of contamination of water objects by using macrophyte-based bioindication. In: 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Book 5, vol. 2, pp. 597–602 (2016)Google Scholar
  11. 11.
    Martsenyuk, V., Petruk, V., Kvaternyuk, S., Pohrebennyk, V., Bezusiak, Y.I., Petruk, R.V., Kłos-Witkowska, A.: Multispectral control of water bodies for biological diversity with the index of phytoplankton. In: 16th International Conference on Control, Automation and Systems (ICCAS 2016), Book 5, vol. 2, pp. 988–993 (2016)Google Scholar
  12. 12.
    Petruk, V., Kvaternyuk, S., Yasynska, V., et al.: The method of multispectral image processing of phytoplankton for environmental control of water pollution. Proc. SPIE, 98161N (2015)Google Scholar
  13. 13.
    Kvaternyuk, S., Pohrebennyk, V., Petruk, V., et al.: Mathematical modeling of light scattering in natural water environments with phytoplankton particles. In: 18th International Multidisciplinary Scientific GeoConference SGEM 2018, vol. 18, issue 2.1, pp. 545–552 (2018)Google Scholar
  14. 14.
    Wuana, R.A., Okieimen, F.E.: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 11, 1–19 (2011)Google Scholar
  15. 15.
    Wang, L.K., Chen, J.P., Hung, Y.T., Shammas, N.K.: Heavy Metals in the Environment. CRC Press (2009)Google Scholar
  16. 16.
    Alloway, B.J.: Sources of heavy metals and metalloids in soils. In: Alloway, B. (ed.) Heavy Metals in Soils. Environmental Pollution, vol. 22. Springer (2013)Google Scholar
  17. 17.
    Petruk, V., Kvaternyuk, O., Kvaternyuk, S., et al.: Methods and means of measuring control and diagnostics of biological tissues in vivo based on measurements of color coordinates and multispectral image. Proc. SPIE, 98161H (2015)Google Scholar
  18. 18.
    Kvaternyuk, S., Pohrebennyk, V., Petruk, R., et al.: Multispectral television measurements of parameters of natural biological media. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, vol. 17, issue 51, pp. 689–696 (2017)Google Scholar
  19. 19.
    Petruk, V., Kvaternyuk, S., Kvaternyuk, O., et al.: Assessment of the validity of the diagnosis of damage of tissues by multispectral method using neural network. Przeglad elektrotechniczny 5(93), 106–109 (2017)Google Scholar
  20. 20.
    European Commission, DG Environment: A study on the economic valuation of environmental externalities from landfill disposal and incineration of waste. Final main Report (2000)Google Scholar
  21. 21.
    Bozkurt, S., Moreno, L., Neretnieks, I.: Long-term processes in waste deposits. Sci. Total Environ. 250, 101–121 (2000)CrossRefGoogle Scholar
  22. 22.
    Ehrig, H.-J.: Leachate quality. In: Christensen, T., Cossu, R., Stegmann, R. (eds.) Sanitary Landfilling: Process, Technology and Environment Impact, pp. 213–229. Academic Press (1989)Google Scholar
  23. 23.
    Flyhammar, P.: Estimation of heavy metal transformations in municipal solid waste. Sci. Total Environ. 198(2), 123–133 (1997)CrossRefGoogle Scholar
  24. 24.
    Wzorek, M., Tańczuk, M.: Production of biosolid fuels from municipal sewage sludge: technical and economic optimization. Waste Manage. Res. 33(8), 704–714 (2015)CrossRefGoogle Scholar
  25. 25.
    Pohrebennyk, V., Petryk, A.: The degree of pollution with heavy metals of fallow soils in rural administrative units of Psary and Płoki in Poland. In: Proceedings of 17th International Multidisciplinary Scientific Geoconference SGEM 2017, pp. 967–974 (2017)Google Scholar
  26. 26.
    Recknagel, S., Radant, H., Kohlmeyer, R.: Survey of mercury, cadmium and lead content of household batteries. Waste Manage. 34(1), 156–161 (2014)CrossRefGoogle Scholar
  27. 27.
    Six, L., Smolders, E.: Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Sci. Total Environ. 485, 319–328 (2014)CrossRefGoogle Scholar
  28. 28.
    Sarkar, B.: Heavy Metals in the Environment. CRC Press (2002)Google Scholar
  29. 29.
    Moore, J.W., Ramamoorthy, S.: Heavy Metals in Natural Water. Springer (1984)Google Scholar
  30. 30.
    European Commission DG ENV. E3: Heavy metals in waste. Final Report, Project ENV.E.3/ETU/2000/0058, COWI A/S (2002)Google Scholar
  31. 31.
    Ishchenko, V., Llori, J., Ramos, C.: Determinación del impacto ambiental de los componentes de champús sobre las algas Chlorella por el método de bioindicación. Waste Sci. Technol. 8(6), 37–46 (2017)Google Scholar
  32. 32.
    Ishchenko, V., Pohrebennyk, V., Kochanek, A., Przydatek, G.: Comparative environmental analysis of waste processing methods in paper recycling. In: Proceedings of International Multidisciplinary Geoconference SGEM 2017, vol. 17, issue 51, pp. 227–234 (2017)Google Scholar
  33. 33.
    Mikhalieva, M., Mykyychuk, M., Hots, N., Dzikovska, Y.: Use of electric and acoustic technologies for automated control of liquid. In: Proceedings of the 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT), pp. 88–90 (2016)Google Scholar
  34. 34.
    Jun, S., Kochan, O., Kochan, R.: Thermocouples with built-in self-testing. Int. J. Thermophys. 37(4), paper number 37 (2016)Google Scholar
  35. 35.
    Watson Jr., W.D.: Economic considerations in controlling mercury pollution. In: Nriagu, J.O. (ed.) The Biogeochemistry of Mercury in the Environment, pp. 41–77. Elsevier-North-Holland Biomedical Press (1979)Google Scholar
  36. 36.
    Mor, S., Ravindra, K., Dahiya, R., Chandra, A.: Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 118, 435–456 (2006)CrossRefGoogle Scholar
  37. 37.
    Tumuklu, A., Yalcin, M., Sonmez, M.: Detection of heavy metal concentrations in soil caused by Nigde city garbage dump. Pol. J. Environ. Stud. 16(4), 651–658 (2007)Google Scholar
  38. 38.
    Flyhammar, P.: Estimation of heavy metal transformations in municipal solid waste. Sci. Total Environ. 198, 123–133 (1997)CrossRefGoogle Scholar
  39. 39.
    Yanful, E., Quigley, R., Nesbitt, H.: Heavy metal migration at a landfill site, Sarnia, Ontario, Canada—2: metal partitioning and geotechnical implications. Appl. Geochem. 3, 623–629 (1988)CrossRefGoogle Scholar
  40. 40.
    Andreas, L., Bilitewski, B.: Effects of waste quality and landfill technology on the long-term behaviour of municipal landfills. Waste Manage. Res. 17, 413–423 (1999)CrossRefGoogle Scholar
  41. 41.
    Heyer, K.U.: Emissionsreduzierung in der Deponienachsorge. Hamburger Berichte, Band 21, Verlag Abfall aktuell, Stuttgart, Germany (2003)Google Scholar
  42. 42.
    Nguyen, X.H.: A laboratory simulation of municipal solid waste biodegradation in landfill bioreactors. Dr.-Ing. thesis, Technical University of Dresden, Germany (2011)Google Scholar
  43. 43.
    Ishchenko, V.: Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste. J. Mater. Cycles Waste Manage. 20(3), 1892–1900 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Bilgili, M.S., Demir, A., Ince, M., Örkaya, B.: Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. J. Hazard. Mater. 145, 186–194 (2007)CrossRefGoogle Scholar
  45. 45.
    Janz, A.: Schwermetalle aus Elektroaltgeräten und Batterien im kommunalen Restabfall. Potenziale, Mobilisierung und Freisetzung während der Deponierung. Dr.-Ing. thesis, Technical University of Dresden, Germany (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Ecology and Environmental SafetyVinnytsia National Technical UniversityVinnytsiaUkraine

Personalised recommendations