Advertisement

Cutting Forces and Power in Machining Shaping of AlCu4MgSi Aluminium Alloy

  • Eugene FeldshteinEmail author
  • Stanislaw Legutko
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 198)

Abstract

The results of studies of cutting forces and power are presented when turning AlCu4MgSi alloy under various cooling conditions and using various coatings on inserts. It has been found that the conditions for cooling the cutting zone affect insignificantly the cutting forces with a certain decrease for the case of MQCL. The effect of the coating composition is also small, except for the case of cutting with a larger cutting depth and lower feed rates and cutting speeds, when TiAlN coating provided a reduction in the cutting force by 1.7–2.5 times. The relationship between the components of the cutting force can be described by the dependence FcFp > Ff. The intensity of the influence of the cutting parameters on the forces decreases in the direction fapvc. The cutting power is low, less than 2 kW. The exception is cutting with maximum speed and significant feeds and cutting depths, which can be explained in this case by the influence of the inertia force.

Keywords

Cutting force MQCL Dry cutting TiAlN AlTiN 

References

  1. 1.
    Oczoś, K.E., Kawalec, A.: Kształtowanie metali lekkich. PWN, Warszawa (2012)Google Scholar
  2. 2.
    Songmene, V., Khettabi, R., Zaghbani, I., Kouam, J.A.D.: Machining and machinability of aluminum alloys. In: Aluminium Alloys, Theory and Applications. Red. Kvackaj Tibor, Canada (2011)Google Scholar
  3. 3.
    Wojciechowski, S., Maruda, R.W., Krolczyk, G.M., Nieslony, P.: Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis. Eng. 51, 582–596 (2018)CrossRefGoogle Scholar
  4. 4.
    Wojciechowski, S., Maruda, R.W., Nieslony, P., Krolczyk, G.M.: Investigation on the edge forces in ball end milling of inclined surfaces. Int. J. Mech. Sci. 119, 360–369 (2016)CrossRefGoogle Scholar
  5. 5.
    Fukui, H., Okida, J., Omori, N., Moriguchi, H., Tsuda, K.: Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf. Coat. Technol. 187(1), 70–76 (2004)CrossRefGoogle Scholar
  6. 6.
    Sreejith, P.S.: Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater. Lett. 62(2), 276–278 (2008)CrossRefGoogle Scholar
  7. 7.
    Siddesh Kumar, N.G., Shiva Shankar, G.S., Ganesh, M.N., Vibudha, L.K.: Experimental investigations to study the cutting force and surface roughness during turning of aluminium metal matrix hybrid composites. Mater. Today: Proc. 4, 9371–9374 (2017)CrossRefGoogle Scholar
  8. 8.
    Wang, B., Liu, Z., Song, Q., Wan, Y., Shi, Z.: Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. J. Clean. Prod. 129, 292–304 (2016)CrossRefGoogle Scholar
  9. 9.
    Adamski, W.: Wybrane kierunki zwiększania wydajności procesów skrawania. Mechanik 5–6, 540–546 (2009)Google Scholar
  10. 10.
    Obróbka skrawaniem stopów aluminium i magnezu. Praca zbiorowa. Pod red. Kuczmaszewski, J., Zaleski, K. Lublin, Politechnika Lubelska (2015)Google Scholar
  11. 11.
    Jawahir, I.S., Dillon Jr., O.W.: Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques. In: Proceedings of the First International Conference on Sustainable Manufacturing SM1, pp. 1–15. Montreal, Canada (2007)Google Scholar
  12. 12.
    Patalas-Maliszewska, J., Klos, S.: An Intelligent System for Core-Competence Identification for Industry 4.0 Based on Research Results from German and Polish Manufacturing Companies in a Production Facility. Intelligent Systems in Production Engineering and Maintenance—ISPEM 2017. Book Series: Advances in Intelligent Systems and Computing, 637, 131–139 (2018)Google Scholar
  13. 13.
    Mia, M., Rifat, A., Tanvir, MdF, Gupta, M.K., Hossain, MdJ, Goswami, A.: Multi-objective optimization of chip-tool interaction parameters using Grey-Taguchi method in MQL-assisted turning. Measurement 129, 156–166 (2018)CrossRefGoogle Scholar
  14. 14.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arab. J. Sci. Eng. 41(2), 661–668 (2016)CrossRefGoogle Scholar
  15. 15.
    Maruda, R.W., Krolczyk, G.M., Michalski, M., Nieslony, P., Wojciechowski, S.: Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J. Mater. Eng. Perform. 26(1), 431–438 (2017)CrossRefGoogle Scholar
  16. 16.
    Krolczyk, G.M., Maruda, R.W., Krolczyk, J.B., Nieslony, P., Wojciechowski, S., Legutko, S.: Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement 121, 225–239 (2018)CrossRefGoogle Scholar
  17. 17.
    Gupta, M.K., Sood, P.K., Sharma, V.S.: Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater. Manuf. Processes 31, 1671–1682 (2016)CrossRefGoogle Scholar
  18. 18.
    Nadolny, K., Wojtewicz, M., Sienicki, W., Herman, D.: An analysis of centrifugal MQL supply system potential in the internal cylindrical grinding process. Arch. Civil Mech. Eng. 15(3), 639–649 (2015)CrossRefGoogle Scholar
  19. 19.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Research emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Teh. Vjesn. – Tech. Gaz. 22(5), 1213–1218 (2015)Google Scholar
  20. 20.
    Chuangwen, X., Ting, X., Huaiyuan, L., Zhicheng, S., Hongbing, J., Mandong, L.: Friction, wear, and cutting tests on 022Cr17Ni12Mo2 stainless steel under minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol. 90(1–4), 677–689 (2017)CrossRefGoogle Scholar
  21. 21.
    Maruda, R.W., Legutko, S., Krolczyk, G.M., Raos, P.: Influence of cooling conditions on the machining process under MQCL and MQL conditions. Teh. Vjesn. - Tech. Gaz. 22(4), 965–970 (2015)CrossRefGoogle Scholar
  22. 22.
    Maruda, R.W., Krolczyk, G.M., Nieslony, P., Wojciechowski, S., Michalski, M., Legutko, S.: The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 24, 107–115 (2016)CrossRefGoogle Scholar
  23. 23.
    Kishawy, H.A., Dumitrescu, M., Ng, E.G., Elbestawi, M.A.: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int. J. Mach. Tools Manuf. 45(2), 219–227 (2005)CrossRefGoogle Scholar
  24. 24.
    Pusavec, F., Kramar, D., Krajnik, P., Kopac, J.: Transitioning to sustainable production—Part II: Evaluation of sustainable machining technologies. J. Clean. Prod. 18(12), 1211–1221 (2010)CrossRefGoogle Scholar
  25. 25.
    Taavitsainen, V.M.T.: Experimental optimization and response surfaces. In: Varmuza, K. (ed.) Chemometrics in Practical Applications, pp. 91–138. In Tech, Rijeka (2012)Google Scholar
  26. 26.
    Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., Sobczak-Kupiec, A.: A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Mach. Tools Manuf. 100, 81–92 (2016)CrossRefGoogle Scholar
  27. 27.
    Rusinek, R., Warmiński, J.: Skrawanie toczeniem elementów o przekroju niekołowym. Eksploatacja i niezawodność 4, 30–33 (2004)Google Scholar
  28. 28.
    Śniegulska-Grądzka, D., Nejman, M., Jemielniak, K.: Cutting force coefficients determination using vibratory cutting. Proc. CIRP 62, 205–208 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland
  2. 2.Faculty of Mechanical Engineering and ManagementPoznan University of TechnologyPoznanPoland

Personalised recommendations