Advertisement

Mensageria: A Smart City Framework for Real-Time Analysis of Traffic Data Streams

  • Marcos Roriz Junior
  • Rafael Pereira de Oliveira
  • Felipe Carvalho
  • Sergio LifschitzEmail author
  • Markus Endler
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 926)

Abstract

Several smart city systems have focused on addressing a specific mobility problem scenario (e.g., air pollution, traffic jam) in a given city. The task of adding, extending, or porting the smart city scenario to other cities can be very challenging due to the rigid structure of such existing systems. To address this issue, in this paper we investigate common programming constructors that can be used to leverage the construction of such dynamic, smart city systems in the mobility domain. We propose Mensageria, a framework based on both the Complex Event Processing data-streaming processing paradigm and relational database management systems, which can dynamically deploy new or extend existing smart city scenarios in near real-time and maintain an updated dataset for provenance purposes. Mensageria provides several real-time primitives, such as filter, join, and enrich, that can be used to integrate, process, and analyze the city entities data streams. We discuss the generality, performance, and limitations of the proposed constructs through a real-world case study that was used in the Olympic Games of Rio in 2016 to detect, in real-time, existing and new situations that could affect the city mobility infrastructure.

Keywords

Smart city Data stream processing Urban computing 

Notes

Acknowledgments

The authors would like to thank Alexandre Cardeman and Dario Bizzo Marques from Centro de Operaões do Rio de Janeiro (COR).

References

  1. 1.
    Aazam, M., Khan, I., Alsaffar, A.A., Huh, E.N.: Cloud of things: integrating Internet of Things and cloud computing and the issues involved. In: Proceedings of 2014 11th International Bhurban Conference on Applied Sciences Technology (IBCAST), Islamabad, Pakistan, 14th–18th January 2014, pp. 414–419, January 2014Google Scholar
  2. 2.
    Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. J. Internet Serv. Appl. 6(1), 25 (2015)CrossRefGoogle Scholar
  3. 3.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2005)CrossRefGoogle Scholar
  4. 4.
    Bonino, D., Rizzo, F., Pastrone, C., Soto, J.A.C., Ahlsen, M., Axling, M.: Block-based realtime big-data processing for smart cities. In: 2016 IEEE International of Smart Cities Conference (ISC2), pp. 1–6. IEEE (2016)Google Scholar
  5. 5.
    Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V., Tzoumas, K.: Apache Flink: unified stream and batch processing in a single engine. Data Eng., 28–38 (2015)Google Scholar
  6. 6.
    Cheng, B., Longo, S., Cirillo, F., Bauer, M., Kovacs, E.: Building a big data platform for smart cities: experience and lessons from santander. In: 2015 IEEE International Congress on Big Data (BigData Congress), pp. 592–599. IEEE, June 2015Google Scholar
  7. 7.
    Del Esposte, A.M., Kon, F., Costa, F.M., Lago, N.: InterSCity: a scalable microservice-based open source platform for smart cities. In: Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems (2017)Google Scholar
  8. 8.
    Demchenko, Y., de Laat, C., Membrey, P.: Defining architecture components of the big data ecosystem. In: 2014 International Conference on Collaboration Technologies and Systems (CTS), pp. 104–112, May 2014Google Scholar
  9. 9.
    EsperTech: Complex Event Processing (2014). http://www.espertech.com/esper/
  10. 10.
    Etzion, O., Niblett, P.: Event Processing in Action, 1st edn. Manning Publications Co., Greenwich (2010)Google Scholar
  11. 11.
    Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, M., Mock, M.: Issues in complex event processing: status and prospects in the Big Data era. J. Syst. Softw. 127, 1–20 (2016)Google Scholar
  12. 12.
    Girtelschmid, S., Steinbauer, M., Kumar, V., Fensel, A., Kotsis, G.: Big data in large scale intelligent smart city installations. In: Proceedings of International Conference on Information Integration and Web-based Applications & Services, p. 428. ACM (2013)Google Scholar
  13. 13.
    Gurgen, L., Gunalp, O., Benazzouz, Y., Gallissot, M.: Self-aware cyber-physical systems and applications in smart buildings and cities. In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1149–1154, March 2013Google Scholar
  14. 14.
    Kon, F., Santana, E.F.Z.: Cidades inteligentes: conceitos, plataformas e desafios. Jornadas de Atualização em Informática 2016—JAI, p. 17 (2016)CrossRefGoogle Scholar
  15. 15.
    Luckham, D., Schulte, R.: Event Processing Glossary - Version 2.0 (2011)Google Scholar
  16. 16.
    Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)Google Scholar
  17. 17.
    Matysiak, M.: Data stream mining: basic methods and techniques. Technical report, Rheinisch-Westfälische Technische Hochschule Aachen (2012)Google Scholar
  18. 18.
    Mitton, N., Papavassiliou, S., Puliafito, A., Trivedi, K.S.: Combining cloud and sensors in a smart city environment. EURASIP J. Wirel. Commun. Netw. 2012(1), 247 (2012)CrossRefGoogle Scholar
  19. 19.
    Parkavi, A., Vetrivelan, N.: A smart citizen information system using Hadoop: a case study. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research, December 2013Google Scholar
  20. 20.
    Sanchez, L., et al.: SmartSantander: IoT experimentation over a smart city testbed. Comput. Netw. 61, 217–238 (2014)CrossRefGoogle Scholar
  21. 21.
    Shasha, D., Bonnet, P.: Database Tuning: Principles, Experiments, and Troubleshooting Techniques. Elsevier, Amsterdam (2002)Google Scholar
  22. 22.
    Tei, K., Gürgen, L.: ClouT: cloud of things for empowering the citizen clout in smart cities. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 369–370, March 2014Google Scholar
  23. 23.
    Tönjes, R., et al.: Real time IoT stream processing and large-scale data analytics for smart city applications. In: Poster Session, European Conference on Networks and Communications (2014)Google Scholar
  24. 24.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 177–186. ACM, New York (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcos Roriz Junior
    • 1
    • 2
  • Rafael Pereira de Oliveira
    • 1
  • Felipe Carvalho
    • 1
  • Sergio Lifschitz
    • 1
    Email author
  • Markus Endler
    • 1
  1. 1.Departamento de InformáticaPontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)Rio de JaneiroBrazil
  2. 2.Engenharia de Transportes – Faculdade de Ciências e TecnologiaUniversidade Federal de Goiás (UFG)Aparecida de GoiâniaBrazil

Personalised recommendations