Advertisement

DMEK: Improving Profile Matching in Opportunistic Collaborations

  • José Guilherme MaywormEmail author
  • Jonice Oliveira
  • Fabrício Firmino
  • Claudio M. de Farias
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 926)

Abstract

As the number of mobile devices grow, also grows the amount of data exchanged. This ever growing amount of data may overload Internet Service Providers. A possible solution to this problem is to use the mobile devices wireless network capabilities to exchange data by creating mobile P2P networks. These networks should opportunistically collaborate to exchange information to other devices in their proximity, only requiring users to specify their interests. This paper presents DMEK, (Decision Mobile Exchange of Knowledge) a solution where mobile devices disseminate knowledge among their users, opportunistically, using a decision mechanism based on profile matching. Experiments show DMEK feasibility and performance.

Keywords

Opportunistic Collaboration Mobile devices Profile matching Peer-to-peer Exchange Knowledge 

References

  1. 1.
    Statista: Forecast of mobile phones worldwide. https://www.statista.com/statistics/274774/forecastof-mobile-phone-users-worldwide Accessed 18 Mar 2016
  2. 2.
    Farias, C., et al.: Multisensor data fusion in shared sensor and actuator networks. In: 2014 17th International Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2014)Google Scholar
  3. 3.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  4. 4.
    Guo, B., Zhang, D., Wang, Z., Yu, Z., Zhou, X.: Opportunistic IoT: exploring the harmonious interaction between human and the Internet of Things. J. Netw. Comput. Appl. 36(6), 1531–1539 (2013)CrossRefGoogle Scholar
  5. 5.
    Kortuem, G., Schneider, J., Preuitt, D., Thompson, T.G.C., Fickas, S., Segall, Z.: When peer-to-peer comes face-to-face: collaborative peer-to-peer computing in mobile ad-hoc networks. In: Proceedings of the First International Conference on Peer-to-Peer Computing, pp. 75–91. IEEE (2001)Google Scholar
  6. 6.
    Savaglio, C., Fortino, G.: Autonomic and cognitive architectures for the Internet of Things. In: Di Fatta, G., Fortino, G., Li, W., Pathan, M., Stahl, F., Guerrieri, A. (eds.) IDCS 2015. LNCS, vol. 9258, pp. 39–47. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23237-9_5CrossRefGoogle Scholar
  7. 7.
    Castro, L.A., et al.: Collaborative opportunistic sensing with mobile phones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 2014 Adjunct, pp. 1265–1272. ACM, New York (2014)Google Scholar
  8. 8.
    Souza, D.D.S., Silveira, P.C., Oliveira, J., Fogaçca, G., de Souza, J.M.: Estudo da aplicação de uma abordagem de disseminação oportunística de dados no cenário de cidades inteligentes (2012)Google Scholar
  9. 9.
    Oliveira, J., Souza, D.D.S., de Lima, P.Z., da Silveira, P.C., de Souza, J.M.: Enhancing knowledge flow in a health care context: a mobile computing approach. JMIR mHealth and uHealth 2(4), e17 (2014)CrossRefGoogle Scholar
  10. 10.
    Bluetooth: Bluetooth Specifications. https://www.bluetooth.com/specifications Accessed 18 July 2018
  11. 11.
    Han, Q., Cho, D.: Characterizing the technological evolution of smartphones: insights from performance benchmarks. In: Proceedings of the 18th Annual International Conference on Electronic Commerce: e-Commerce in Smart connected World. ACM (2016). Article No. 32Google Scholar
  12. 12.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38(2), 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shafer, G., et al.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  14. 14.
    Provan, G.M.: The validity of dempster-shafer belief functions. Int. J. Approx. Reason. 6(3), 389–399 (1992)CrossRefGoogle Scholar
  15. 15.
    Garvey, T.D., Lowrance, J.D., Fischler, M.A.: An inference technique for integrating knowledge from disparate sourcesGoogle Scholar
  16. 16.
    Cunha, B.C., Uscamayta, A.O.M., Pimentel, M.D.G.C.: Opportunistic recording of live experiences using multiple mobile devices. In: Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web, Webmedia 2016, pp. 99–102. ACM, New York (2016)Google Scholar
  17. 17.
    Tsai, F.S., Han, W., Xu, J., Chua, H.C.: Design and development of a mobile peerto- peer social networking application. Expert Syst. Appl. 36(8), 11077–11087 (2009)CrossRefGoogle Scholar
  18. 18.
    Chen, Z., Yavuz, E.A., Karlsson, G.: Demo of a collaborative music sharing system. In: Proceedings of the Third ACM International Workshop on Mobile Opportunistic Networks, MobiOpp 2012, pp. 77–78. ACM, New York (2012)Google Scholar
  19. 19.
    Fortino, G., Russo, W., Savaglio, C., Viroli, M., Zhou, M.: Modeling opportunistic IoT services in open IoT ecosystems. In: 17th Workshop From Objects to Agents WOA, pp. 90–95 (2017)Google Scholar
  20. 20.
    Baumgart, A.S., Knapp, H., Schader, M.: Mobile semantic data exchange in ad hoc networks using distributed profiles. In: 2006 1st International Symposium on Wireless Pervasive Computing, p. 6-pp. IEEE (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José Guilherme Mayworm
    • 1
    Email author
  • Jonice Oliveira
    • 1
  • Fabrício Firmino
    • 1
  • Claudio M. de Farias
    • 1
  1. 1.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations