Model-Based State Estimation for the Diagnosis of Multiple Faults in Non-linear Electro-Mechanical Systems

  • Mikel GonzalezEmail author
  • Oscar Salgado
  • Jan Croes
  • Bert Pluymers
  • Wim Desmet
Conference paper
Part of the Applied Condition Monitoring book series (ACM, volume 15)


This paper presents a framework for the condition monitoring of large non-linear electro-mechanical systems. Faults are assessed in different subsystems by means of joint state-parameter estimations. The different estimations are interconnected by a Digital Twin of the system, which provides background information for the physics neglected in the estimation models. In addition, the Digital Twin provides a benchmark for the estimations, which allows identifying the location and extend of faults. As application case, the condition of the guiding system and the electric machine of a vertical transportation system are evaluated. For this purpose, a scaled test bench of the vertical transportation system is used, showing the potential of this approach in the condition monitoring of complex industrial systems.


State estimation Modeling Virtual sensing Digital Twin 



The authors gratefully acknowledge the European Commission for its support of the Marie-Sklodowska Curie program through the ITN ANTARES project (GA 606817) and the support from the KU Leuven research fund.


  1. 1.
    Farrar C, Worden K (2012) Structural Health Monitoring: A Machine Learning Perspective. Wiley, ChichesterCrossRefGoogle Scholar
  2. 2.
    Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis: part i: quantitative model-based methods. Comput Chem Eng 27(3):293–311CrossRefGoogle Scholar
  3. 3.
    Isermann R (2005) Model-based fault-detection and diagnosis-status and applications. Annu Rev Control 29(1):71–85CrossRefGoogle Scholar
  4. 4.
    Del Pizzo A, Spina I, Schäfer U, Beti LT (2011) A parameter estimation method for on-line failure detection in permanent magnet AC-brushless motors having current-dependent parameters. In: SDEMPED 2011 - 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, pp 258–264 (2011)Google Scholar
  5. 5.
    Jha MS, Dauphin-Tanguy G, Ould-Bouamama B (2016) Particle filter based hybrid prognostics for health monitoring of uncertain systems in bond graph framework. Mech Syst Signal Process 75:301–329CrossRefGoogle Scholar
  6. 6.
    Bonvini M, Sohn MD, Granderson J, Wetter M, Piette MA (2014) Robust on-line fault detection diagnosis for hvac components based on nonlinear state estimation techniques. Appl Energy 124:156–166CrossRefGoogle Scholar
  7. 7.
    Arriola D, Thielecke F (2017) Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system. Mech Syst Signal Process 94:322–345CrossRefGoogle Scholar
  8. 8.
    Cauffriez L, Grondel S, Loslever P, Aubrun C (2016) Bond graph modeling for fault detection and isolation of a train door mechatronic system. Control Eng Pract 49:212–224CrossRefGoogle Scholar
  9. 9.
    Frank PM, Ding X (1997) Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J Process Control 7(6):403–424CrossRefGoogle Scholar
  10. 10.
    Isermann R (200) Integration of fault detection and diagnosis methods. In: Issues of Fault Diagnosis for Dynamic Systems, pp 15–49. Springer, LondonCrossRefGoogle Scholar
  11. 11.
    Hanlon PD, Maybeck PS (2000) Multiple-model adaptive estimation using a residual correlation Kalman filter bank. IEEE Trans Aerosp Electron Syst 36(2):393–406CrossRefGoogle Scholar
  12. 12.
    Simon D (2006) Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, HobokenCrossRefGoogle Scholar
  13. 13.
    Isermann R, Munchhof M (2011) Identification of Dynamic Systems: An Introduction with Applications. Springer, HeidelbergCrossRefGoogle Scholar
  14. 14.
    Naets F, Croes J, Desmet W (2014) An online coupled state/input/parameter estimation approach for structural dynamics 283:1167–1188Google Scholar
  15. 15.
    Hermann R, Krener A (1977) Nonlinear controllability and observability. IEEE Trans Autom Control 22(5):728–740 (Cited By 956)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ghosh B, Rosenthal J (1995) A generalized popov-belevitch-hautus test of observability. IEEE Trans Autom Control 40(1):176–180 (Cited By 14)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Croes J (2017) Virtual sensing in mechatronic systems State estimation using system level models. PhD thesisGoogle Scholar
  18. 18.
    Nakhaeinejad M, Bryant MD (2011). Observability analysis for model-based fault detection and sensor selection in induction motors. Meas Sci Technol 22(7)CrossRefGoogle Scholar
  19. 19.
    Strakosch G (1998) The Vertical Transportation Handbook. Wiley, HobokenCrossRefGoogle Scholar
  20. 20.
    Chartered Institution of Building Services Engineers, CIBSE (2005) Transportation Systems in BuildingsGoogle Scholar
  21. 21.
    Kukhnin A, Li T, Yates M, Tokarenko A, Bell A (2016) Global Elevators and Escalators Industry PrimerGoogle Scholar
  22. 22.
    Andrew J, Kaczmarczyk S (2011) Systems Engineering of Elevators. Elevator WorldGoogle Scholar
  23. 23.
    Ruoho S, Kolehmainen J, Ikäheimo J, Arkkio A (2010) Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor. IEEE Trans Magn 46(3 PART 2):949–953CrossRefGoogle Scholar
  24. 24.
    González M, Esteban E, Salgado O, Urchegui MA, Croes J, Pluymers B, Desmet W (2016) Model-based virtual sensing approaches for the estimation of forces in guiding systems. In: ISMA International Conference on Noise and Vibration Engineering, LeuvenGoogle Scholar
  25. 25.
    Gonzalez M, Salgado O, Croes J, Pluymers B, Desmet W (2017) Condition monitoring of guiding systems by means of model-based virtual sensors, pp 1–8Google Scholar
  26. 26.
    Krause P, Wasynczuk O, Sudhoff S, Pekarek S (2013) Analysis of Electric Machinery and Drive Systems, vol 75. Wiley, HobokenCrossRefGoogle Scholar
  27. 27.
    Esteban E, Salgado O, Iturrospe A, Isasa I (2016) Model-based approach for elevator performance estimation. Mech Syst Signal Process 68–69:125–137CrossRefGoogle Scholar
  28. 28.
    Esteban E, Salgado O, Iturrospe A, Isasa I (2017) Design methodology of a reduced-scale test bench for fault detection and diagnosis. Mechatronics 47:14–23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mikel Gonzalez
    • 1
    • 2
    Email author
  • Oscar Salgado
    • 1
  • Jan Croes
    • 2
    • 3
  • Bert Pluymers
    • 2
    • 3
  • Wim Desmet
    • 2
    • 3
  1. 1.IK4-Ikerlan Technology Research Center, Control and Monitoring AreaMondragónSpain
  2. 2.Department of Mechanical EngineeringKU LeuvenHeverleeBelgium
  3. 3.DMMS lab, Flanders MakeLommelBelgium

Personalised recommendations