Advertisement

Estimating the Rotational Synchronous Component from Instantaneous Angular Speed Signals in Variable Speed Conditions

  • Guillaume BruandEmail author
  • Florent Chatelain
  • Pierre Granjon
  • Nadine Martin
  • Christophe Duret
  • Hervé Lénon
Conference paper
Part of the Applied Condition Monitoring book series (ACM, volume 15)

Abstract

Condition monitoring performed directly from the estimated instantaneous angular speed has found some interesting applications in industrial environments, going from bearing monitoring to gear failure detection. One common way to estimate the angular speed makes use of angular encoders linked to a rotating shaft. At the opposite of traditional time-sampled signals, encoders describe purely angular phenomena often encountered in rotating machines. However, rotating encoders suffer from various geometric defects, corrupting the measurement with an angular periodic signature. The angular synchronous average is a very popular tool to estimate this systematic error, but is only adapted to constant speed conditions, which is rarely the case in real applications. We propose here two different estimators to compute a robust estimation of the synchronous component in variable speed conditions. The former, as a data-driven approach, is based on a local weighted least squares method, while the latter is a model-based approach. We study the behaviour of our estimators with both simulations and experimental signals, and show the relevance of the proposed method in an industrial context.

Keywords

Condition monitoring Instantaneous Angular Speed Synchronous average Non-stationary 

References

  1. 1.
    Abboud D, Antoni J, Sieg-Zieba S, Eltabach M (2016) Deterministic-random separation in nonstationary regime. J Sound Vibr 362(Suppl. C):305–326.  https://doi.org/10.1016/j.jsv.2015.09.029CrossRefGoogle Scholar
  2. 2.
    André H, Bourdon A, Rémond D (2012) Instantaneous angular speed monitoring of a 2MW wind turbine using a parametrization process. In: Condition monitoring of machinery in non-stationary operations. Springer, Heidelberg, pp 415–423CrossRefGoogle Scholar
  3. 3.
    Braun S (2011) The synchronous (time domain) average revisited. Mech Syst Sig Process 25(4):1087–1102.  https://doi.org/10.1016/j.ymssp.2010.07.016CrossRefGoogle Scholar
  4. 4.
    Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836MathSciNetCrossRefGoogle Scholar
  5. 5.
    Daher Z, Sekko E, Antoni J, Capdessus C, Allam L (2010) Estimation of the synchronous average under varying rotating speed condition for vibration monitoring. In: Proceedings of ISMAGoogle Scholar
  6. 6.
    Lamraoui M, Thomas M, El Badaoui M, Girardin F (2014) Indicators for monitoring chatter in milling based on instantaneous angular speeds. Mech Syst Sig Process 44(1):72–85CrossRefGoogle Scholar
  7. 7.
    Li Y, Gu F, Harris G, Ball A, Bennett N, Travis K (2005) The measurement of instantaneous angular speed. Mech Syst Sig Process 19(4):786–805CrossRefGoogle Scholar
  8. 8.
    Renaudin L, Bonnardot F, Musy O, Doray J, Rémond D (2010) Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mech Syst Sig Process 24(7):1998–2011CrossRefGoogle Scholar
  9. 9.
    Rivola A, Troncossi M (2014) Zebra tape identification for the instantaneous angular speed computation and angular resampling of motorbike valve train measurements. Mech Syst Sig Process 44(12):5–13.  https://doi.org/10.1016/j.ymssp.2012.11.009CrossRefGoogle Scholar
  10. 10.
    Stander C, Heyns P (2005) Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions. Mech Syst Sig Process 19(4):817–835CrossRefGoogle Scholar
  11. 11.
    Yang J, Pu L, Wang Z, Zhou Y, Yan X (2001) Fault detection in a diesel engine by analysing the instantaneous angular speed. Mech Syst Sig Process 15(3):549–564CrossRefGoogle Scholar
  12. 12.
    Yousef Ben Sasi A, Gu F, Payne B, Ball A (2004) Instantaneous angular speed monitoring of electric motors. J Qual Maintenance Eng 10(2):123–135CrossRefGoogle Scholar
  13. 13.
    Zhao M, Jia X, Lin J, Lei Y, Lee J (2018) Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox. Mech Syst Sig Process 98:16–31CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guillaume Bruand
    • 1
    • 2
    Email author
  • Florent Chatelain
    • 1
  • Pierre Granjon
    • 1
  • Nadine Martin
    • 1
  • Christophe Duret
    • 2
  • Hervé Lénon
    • 2
  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), GIPSA-labGrenobleFrance
  2. 2.NTN-SNR RoulementsAnnecyFrance

Personalised recommendations