Dynamic Management of Bridge Within Internet of Things System Based on Multi Agent Concept

  • Fatima Zahra ChafiEmail author
  • Youssef Fakhri
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)


This article represents a study of Internet of Things (IoT) technology. Its ecosystem based on the use of specific network protocols that facilitate the operation of transporting. Reliable transfer and the energy consumption characterize these protocols. Several platforms developed are designed for IoT, whose main purpose is to monitor the different uses of the sensors and send collected data to the cloud, according to the network protocols, to ensure the management as well as the quantity of energy consumed. The major challenge of IoT is the management of data heterogeneity, also its ability to exist in a complex ubiquitous and distributed system. In this context, we present a solution: The integration of the Multi Agent System (MAS) within IoT, and based on the dynamic management of bridge, which solves the interconnection problems of the embedded systems in the different networks with efficiency. As a network, we propose to use a new Sigfox shield. This Shield is composed of the Sigfox and the Arduino. This contribution talks about the creation and management of IoT_Agent, setting up the constraints of communication, interactions and the interconnection between objects. To do this, the Message Queue Telemetry Transport (MQTT) protocol performs well in terms of energy optimization during communications and interactions between IoT_agent.


IoT Management Energy Connected object Protocols network Heterogeneity Multi agent system IoT_agent Communication Interaction MQTT Bridge SigFox Shield Arduino 


  1. 1.
    Evans, Dave: Internet des objet. The Internet of Things. The Cisco White, Aprill (2011)Google Scholar
  2. 2.
    Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Published online in Wiley Online Library (2012)CrossRefGoogle Scholar
  3. 3.
    Feeney, J: The energy internet of things. Construction21 France. 17 August 2016
  4. 4.
    Billet, B.: The doctoral thesis Système de gestion de flux pour l’Internet des objets intelligents, Flow Management System for the Internet of Intelligent Objects. Versailles Saint-Quentin-En-Yvelines University. 19 Mar 2015Google Scholar
  5. 5.
    Fredj, S.B: “L’internet des objets”, Internet of Things. (2016)
  6. 6.
    CISCO: “L’Internet des objets, ou la connexion d’objets intelligents via l’Internet ou un Intranet”, The Internet of Things, or the connection of smart objects via the Internet or an Intranet. Ciscomag n25. Mar 2009Google Scholar
  7. 7.
    Saleh, I: Issues and Challenges of the Internet of Things (IoT). Published by ISTE Ltd. London, UK— Feb 2017Google Scholar
  8. 8.
    Fredj, S.B.: “L’INTERNET DES OBJETS : CONNECTER VOS CAPTEURS AUX RÉSEAUX IOT !”, The Internet of Objects: Connect Your Sensors to Iot Networks !. Xebia. (2016)
  9. 9.
    Jackson, Virolleau, F., Pang, J., Phang, Y.X., Val, T.: ZigBee, de la théorie à la pratique : création d’un réseau ZigBee avec transmission de données. (ZigBee, From Theory to Practice: Creating a ZigBee Network with Data Transmission). Open Archive TOULOUSE Archive Ouverte (OATAO), 2 Apr 2015Google Scholar
  10. 10.
    Val, T., Campo, E., Adrien Van den Bossche: Technologie ZigBee/802.15.4 : Protocoles, topologies et domaines d’application, ZigBee/802.15.4 technology: Protocols, topologies, and application domains. Archive ouverte HAL. 2 June 2008Google Scholar
  11. 11.
    Kalamba, L.B.: Interconnexion entre deux réseaux cellulaires des normes GSM par faisceau hertziens cas de CCT et Vodacom, Interconnection between two GSM cellular networks per radio-relay system, CCT and Vodacom. (2010)
  12. 12.
    Effort: Low-power wide area network (LPWAN) of internet of things (2015)
  13. 13.
  14. 14.
  15. 15.
    Schmitt, A., Carlier, F., Renault, V., Leroux, P.: Communication multi-niveaux pour des IoT-a: Interactions autour d’un mur d’écrans connectés, Multilevel communication for IoT-a: Interactions around a wall of connected screens. Archive ouverte HAL. 2nd Aug 2017Google Scholar
  16. 16.
    Schmitt, A., Carlier, F., Renault, V: Dynamic bridge generation for IoT data exchange via the MQTT protocol. In: 9th International Conference on Ambient Systems, Networks and Technologies, ANT-2018 and the 8th International Conference on Sustainable Energy Information Technology, SEIT 2018, 8–11 May, 2018, Porto, Portugal. Published by Elsevier B.V. (2018)CrossRefGoogle Scholar
  17. 17.
    Pule, M., Yahya, A., Chuna, J.: Wireless sensor networks: a survey on monitoring water quality. J. Appl. Res. Technol. 15 562–570, received 28 April 2016, Accepted 16 july 2017, Available online 3 january 2018 (2017)CrossRefGoogle Scholar
  18. 18.
    Pandey, P.: Comparative study of long-range communications systems for IoT-Cellular, LoRA & Sigfox. Available on Researchgate. April 2018Google Scholar
  19. 19.
    Cluster of European Research Project on the Internet of Thing: Vision and Challenges for Realising the Internet of Things. Mar 2010Google Scholar
  20. 20.
    Jorge, B., Lacroix, B., Proux, A.: Les protocoles de réseau de l’internet des objets : vulnérabilités connues. The network protocols of the internet of things: known vulnerabilities. unpublishedGoogle Scholar
  21. 21.
    McDermott-Wells, P.: What is Bluetooth ?. IEEE Potentials 23(5) (2005)Google Scholar
  22. 22.
    Chang, K.H.: Bluetooth : a viable solution for IoT ?. IEEE Wirel. Commun. 21 (2014)Google Scholar
  23. 23.
    Alfaiate, J., Fonseca, J.: Bluetooth security analysis for mobile phones. In: CISTI (Iberian Conference on Information Systems & Technologies) (2012)Google Scholar
  24. 24.
    Ekbal, A.: Five trends shaping 802.11 WLANs. Available on: (2015)
  25. 25.
    Dini, G., Tiloca, M: Considerations on security in zigbee networks. In: IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. SUTC 2010 and IEEE International Workshop on Ubiquitous and Mobile Computing, UMC 2010, Newport Beach, California, USA, 7–9 June 2010Google Scholar
  26. 26.
  27. 27.
    Montenegro, G., Kushalnagar, N.: RFC 4944—Transmission of IPv6 packets over IEEE 802.15.4 networks. (2007)
  28. 28.
    Ray, P.P.: A survey on internet of things architectures. J. King Saud Univ. Comput. Infor. Sci. 30(3) 291–319 (2018)CrossRefGoogle Scholar
  29. 29.
    Mekki, K., Bajic, E., Chaxel, F., Meyer, F.: A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express. Available online 4 Jan 2018Google Scholar
  30. 30.
    Jung, T., Shah, P., Weyrich, M.: Dynamic co-simulation of internet-of-things-components using a multi-agent-system. Procedia CIRP. Vol, 72, pp. 874–879 (2018). Open access. Available online 27 June 2018CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Laboratory of Research in Computer Science and Telecommunications Ibn Tofail UniversityKenitraMorocco
  2. 2.Director of the Laboratory of Research in Computer Science and Telecommunications Ibn Tofail UniversityKenitraMorocco

Personalised recommendations