Advertisement

Efficiency Analysis of WLS Algorithm with Constant Matrices on Well and Ill Conditioned Power Systems

  • Meriem MajdoubEmail author
  • Jamal Boukherouaa
  • Bouchra Cheddadi
  • Abdelaziz Belfqih
  • Omar Sabri
  • Touria Haidi
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

Traditionally, power flows have gone downstream from the transmission network to the distribution level under the control of transmission system operator through state estimation algorithms. Nowadays, the electricity grid is in transition with the integration of distributed renewable generation, smart cities, electric vehicles and storage technologies which is challenging the traditional monitoring of distribution system and calling for the development of state estimation algorithms fitting distribution system peculiarities. Lack of measurements and computational burden represents two major constraints encountered at distribution level. This paper presents the possibilities offered by two variants of the basic Weighted Least Squares Algorithm to reduce state estimation computation time tested on well and ill conditioned bus systems.

Keywords

Power flows Transmission system State estimation Distributed renewable generation Smart cities Electric vehicles Distribution system Weighted least squares algorithm 

References

  1. 1.
    Ahmad, M.: Power System State Estimation. Artech House (2013)Google Scholar
  2. 2.
    Kothari, D.P., Nagrath, I.J.: Modern Power System Analysis, 3rd edn. Tata Mcgraw, Hill Education (2003)Google Scholar
  3. 3.
    Meng, D., Wang, Y., Tian, X., Huang, L., Hu, Z., Fan, R: Least squares class power system state estimation algorithm efficiency analysis. In: Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering TAEECE (2015)Google Scholar
  4. 4.
    Allemong, J.J., Radu, L., Sasson, A.M.: A fast and reliable state estimation algorithm for AEP’s new control center. IEEE Trans. Power Apparat. Syst. PAS-101(4) (1982)CrossRefGoogle Scholar
  5. 5.
    Thabet, A., Chniba, S., Gaetan, D., Boutayeb, M., Abdelkrim, M.N.: Power systems load flow and state estimation: modified methods and evaluation of stability and speeds computing. Int. Rev. Electr. Eng. I.R.E.E 5(3) (2010)Google Scholar
  6. 6.
    Sirisena, H.R., Brown, E.P.M.: Convergence analysis of weighted least-squares and fast decoupled weighted least-squares state estimation. Int. J. Electr. Power Energy Syst. 6(2), 75–78 (1984)CrossRefGoogle Scholar
  7. 7.
    Abur, A., Exposito, A.G.: Power System Estimation: Theory and Implementation. Marcel Dekker, Inc. (2004)Google Scholar
  8. 8.
    Van Hertem, D.: Usefulness of DC power flow for active power flow analysis with flow controlling devices. In: 8th IEEE International Conference on AC and DC Power Transmission ACDC (2006)Google Scholar
  9. 9.
    Anwar, A., Mahmood, A.N.: Vulnerabilities of smart grid state estimation against false data injection attack. In: Renewable Energy Integration. Green Energy and Technology, pp. 411–428. Springer (2014)Google Scholar
  10. 10.
    Liu, L., Esmalifalak, M., Ding, Q., Emesih, V., Han, Z.: Detecting false data injection attacks on power grid by sparse optimization. IEEE Trans. Smart Grid (2014)Google Scholar
  11. 11.
    Ju, Y., Wu, W., Ge, F., Ma, K., Lin, Y., Ye, L.: Fast decoupled state estimation for distribution networks considering branch ampere measurements. Accepted for Publication in IEEE Transactions on Smart Grid.  https://doi.org/10.1109/tsg.2017.2709463CrossRefGoogle Scholar
  12. 12.
    Ahmad, F., Rasool, A., Ozsoy, E., Rajasekar, S., Sabanovic, A., Elitaş, M.: Distribution system state estimation—a step towards smart grid. Renew. Sustain. Energy Rev. 81(2), 2659–2671 (2018)CrossRefGoogle Scholar
  13. 13.
    Majumdar, A.: Security in power system state estimation. Ph.D. dissertation. Department Electrical and Electronic Engineering, Imperial College London, May 2016Google Scholar
  14. 14.
    Musti, K.S.S., Balasubrahmanyam, P.V., Malireddy, R.R.: Power system state estimation using microsoft excel. Spreadsheet Educ. (eJSiE) 8(1) (2014). Article 1Google Scholar
  15. 15.
    Davoudi, M., Muhammed, E.A.: PMU placement to reduce state estimation bias considering parameters uncertainty. In: The 9th Power Systems Protection & Control Conference (PSPC2015), Jan 2015Google Scholar
  16. 16.
    Nor, N.M., Jegatheesan, R., Nallagowden, I.P.: Newton-raphson state estimation solution employing systematically constructed Jacobian matrix. World Academy of Science, Engineering and Technology, pp. 42 (2008)Google Scholar
  17. 17.
    Geisler, K.I.: Ampere magnitude line measurements for power system state estimation. IEEE Power Eng. Rev. PER 4(8), 31–32 (1984)CrossRefGoogle Scholar
  18. 18.
    Marinho, J.L., Bongers, C. (n.d.): On the use of line-current measurements for reliable state estimation in electric power systems. In: IEEE Conference Proceedings Power Industry Computer Applications Conference, PICA-79 (1979)Google Scholar
  19. 19.
    Baran, M.E., Kelley, A.W.: State estimation for real-time monitoring of distribution systems. IEEE Trans. Power Syst. 9(3), 1601–1609 (1994)CrossRefGoogle Scholar
  20. 20.
    Vide, P.S.C., Barbosa, F.P.M., Ferreira, I. M., & Carvalho, J. B.: Effect on convergence patterns by the use of line current measurements on power system state estimation. In: MELECON 2006—2006 IEEE Mediterranean Electrotechnical Conference (2006)Google Scholar
  21. 21.
    Chen, J., Liao, Y.: State estimation and power flow analysis of power systems. J. Comput. 7(3) (2012)Google Scholar
  22. 22.
    Majdoub, M., Cheddadi, B., Belfqih, A., Boukherouaa, J., Sabri, O., El Mariami, F., Cherkaoui, N.: Study of state estimation using weighted-least-squares method (WLS). In: International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) (2016)Google Scholar
  23. 23.
    Majdoub, M., Sabri, O., Cheddadi, B., Belfqih, A., Boukherouaa, J., El Mariami, F., Cherkaoui, N.: Study of state estimation using weighted least squares method. Int. J. Adv. Eng. Res. Sci. (IJAERS) 3(8) (2016)Google Scholar
  24. 24.
    Sabri, O., Majdoub, M., Cheddadi, B., Belfqih, A., Boukherouaa, J., Mariami, F.E.L., Cherkaoui, N.: Correlation between weight, error and type of measurements in WLS State estimation of a real network. Przegl. Elektrotech. ISSN 0033-2097, p. 93 NR 7/2017Google Scholar
  25. 25.
    Power systems test case archive, University of Washington, Seattle, WA, USA (1993). Online. Available: https://www2.ee.washington.edu/research/pstca/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meriem Majdoub
    • 1
    Email author
  • Jamal Boukherouaa
    • 1
  • Bouchra Cheddadi
    • 2
  • Abdelaziz Belfqih
    • 1
  • Omar Sabri
    • 2
  • Touria Haidi
    • 3
  1. 1.ENSEMCasablancaMorocco
  2. 2.ESTCasablancaMorocco
  3. 3.EHTPCasablancaMorocco

Personalised recommendations