Advertisement

The Impact of Quantum Computing on Computer Science

  • H. AmellalEmail author
  • A. Meslouhi
  • A. El Allati
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

Contrary to classical computer which store data using the digital bits 0 or 1, quantum computer use quantum bits (qubits) for coding information as O, 1, or 01 at the same time. In fact this superposition of states with the other quantum phenomena enables quantum computers to operate vast combinations of states at once. In this study, we analyze the impact of quantum computing in the simplification of classical computing complexities using in computer science. In fact, we focus on the effectiveness of quantum algorithms in different filed classical computer.

Keywords

Security Unstructured databases Quantum algorithms Cryptography 

References

  1. 1.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Clarendon Press, Oxford (1947)Google Scholar
  2. 2.
    Hirvensalo, M.: Quantum Computing. Springer (2010)Google Scholar
  3. 3.
    Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press (2007)Google Scholar
  4. 4.
    Kitaev, A.Y., Shen, A., Vyalyi, M.: Classical and Quantum Computation, vol. 47. Graduate Studies in Mathematics. American Mathematical Society Press (2002)Google Scholar
  5. 5.
    Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. Ser. A 425(1868), 7390 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 438(1907), 553–558MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grover, L.: Fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC 96), pp. 212–219 (1996)Google Scholar
  8. 8.
    Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325328 (1997)CrossRefGoogle Scholar
  9. 9.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644654 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rivest, R.L., Shamir, A., Adleman, L.: Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120126 (1978)Google Scholar
  11. 11.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J.  https://doi.org/10.1002/j.1538-7305.194.tb00928
  12. 12.
    Poulin, D.: Classicality of quantum information processing. Phys. Rev. A 65(4), 042319(10) (2002)Google Scholar
  13. 13.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 14841509 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  15. 15.
    Lomonaco, Jr, S.J.: Shor_s quantum factoring algorithm (2000). arXiv: quantph/0010034Google Scholar
  16. 16.
    Shor, P.W.: Why haven_t more quantum algorithms been found? J. ACM 50(1), 8790 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Abrams, Daniel S., Lloyd, Seth: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 51625165 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University Mohammed V Faculty of SciencesRabatMorocco
  2. 2.Laboratory of Engineering SciencesFaculty of Sciences and TechniquesAjdirMorocco

Personalised recommendations