Advertisement

Integration Methods for Biological Data Sources

  • H. HanafiEmail author
  • F. Rafii
  • B. D. Rossi Hassani
  • M. Aït Kbir
Conference paper
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

Nowadays, recent technologies in biology has gained a lot of attention, because of the massive data they produced with different types, very complex structures and various interaction categories. They allowed to perform deep analysis on cell structure and it’s sub-system. Moreover, They enabled construction of complex networks that represent the extracted data and the mutual interactions between biological entities of diverse types. However, most of users, especially researchers and biologists, find it difficult to do their experiments on a set of data of various types stored in multiple databases. In this paper, we present the state of the art for data integration based on collective mining, using various types of networked biological data. Moreover, we propose a new approach to make it possible to integrate heterogeneous data in the MicroCancer platform, recently developed by our laboratory, to deal with micro-array data.

Keywords

Biological networks MicroCancer generalization Data integration 

References

  1. 1.
    Gligorijevic, V., Przulj, N.: Methods for biological data integration: perspectives and challenges. J. R. Soc. Interface 12, 20150571 (2015)CrossRefGoogle Scholar
  2. 2.
    Hawkins, R., Hon, G., Ren, B.: Next-generation genomics: an integrative approach. Nat. Rev. Genet. 11, 476–486 (2010)CrossRefGoogle Scholar
  3. 3.
    Nielsen, R., Paul, J., Albrechtsen, A., Song, Y.: Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011)CrossRefGoogle Scholar
  4. 4.
    Hirschhorn, J., Daly, M.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)CrossRefGoogle Scholar
  5. 5.
    Duerr, R., et al.: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006)CrossRefGoogle Scholar
  6. 6.
    Quackenbush, J.: Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–427 (2001)CrossRefGoogle Scholar
  7. 7.
    Dahlquist, K., Salomonis, N., Vranizan, K., Lawlor, S., Conklin, B.: GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19–20 (2002)CrossRefGoogle Scholar
  8. 8.
    Marioni, J., Mason, C., Mane, S., Stephens, M., Gilad, Y.: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008)CrossRefGoogle Scholar
  9. 9.
    Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5(7), 621–628 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Gerstein, M., Snyder, M.: RNA-seq: are volutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009)CrossRefGoogle Scholar
  11. 11.
    West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, New York, NY (2000)Google Scholar
  12. 12.
    Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York, NY (2010)CrossRefGoogle Scholar
  13. 13.
    Fadoua, R.: Techniques de data mining pour la prise de décision sur les données despuces à ADN. Ph.D. dissertation. Department Informatique, UAE University (2017)Google Scholar
  14. 14.
    Rafii, F., Hassani, B.D.R., Kbir, M.A.: New approach for microarray data decision making with respect to multiple source. In: Proceeding BDCA’17 Proceedings of the 2nd International Conference on Big Data, Cloud and Applications. Article No. 106, 29–30 Mar 2017. Tetouan, Morocco (2016)Google Scholar
  15. 15.
    Rafii, F., Hassani, B.D.R., Kbir, M.A.: Exploring semantic web technologies to integrate microarray experiments for cancer studies. Int. J. Emerg. Trends Eng. Dev. 6(6), 251–265 (2016)Google Scholar
  16. 16.
    Rafii, F., Kbir, M.A. Hassani, B.D.R.; Microarray data integration to explore the wealth of sources generated by modern molecular biology. In: Veille Stratégique Scientifique et Technologique, pp. 11–13. Granada, Spain (2015)Google Scholar
  17. 17.
    Rafii, F., Kbir M.A., Hassani, B.D.R.: Microarray data integration for efficient decision making. In: Conférence sur les Avancées des Systèmes Décisionnels, pp. 10–12. Tangier, Morocco (2015)Google Scholar
  18. 18.
    Rafii, F., Hassani, B.D.R., Kbir, M.A.: Lung cancer diagnosis based on microarray data by using ART2 network. Int. J. Comput. Sci. Trends Technol. 4(3), 129–136 (2016)Google Scholar
  19. 19.
    Rafii, F., Hassani, B.D.R., Kbir, M.A.: Automatic clustering of microarray data using ART2 neural network. J. Theoret. Appl. Inf. Technol 90(1), 175–184 (2016)Google Scholar
  20. 20.
    Rafii, F. Hassani, B.D.R., Kbir, M.A.: MLP network for lung cancer presence prediction based on microarray data. In: Third World Conference on Complex Systems, pp. 23–25. IEEE, Marrakech, Morocco (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. Hanafi
    • 1
    Email author
  • F. Rafii
    • 1
  • B. D. Rossi Hassani
    • 2
  • M. Aït Kbir
    • 1
  1. 1.LIST LaboratoryCED STI, University, UAETangierMorocco
  2. 2.LABIPHABE LaboratoryCED STI, University, UAETangierMorocco

Personalised recommendations