A Procedure for Validating Impedance Parameters of HF/UHF RFID Transponder Antennas

  • Piotr Jankowski-MihułowiczEmail author
  • Mariusz Węglarski
  • Wojciech Lichoń
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)


The performance of automatic identification in every RFID system is strongly dependent on proper operation of the transponders that are used to mark different kind of objects. The impedance matching between chip and connected antenna is the most significant component determining the design quality of transponder internal circuitry, and hence influencing overall system parameters such as shape and dimensions of interrogation zone, level of identification efficiency, etc. Taking into consideration the various types of RFID systems, the problem has to be considered differently with respect to the operating frequency. Moreover it has to be treated in a different way than it is known from the classical theory of typical radio communication systems. The authors have proposed and developed their own method for validating impedance parameters of RFID transponder antennas operating in the regular HF and UHF bands. It is based on a generalized model of the RFID transponders dedicated to different standards. The developed test procedure consists of four steps involving antenna designing, manufacturing, measuring and validating processes. The practical usefulness of the proposed method is confirmed by experiments conducted with using representative examples designed in research and development projects realized with partners from the industry.


RFID HF UHF Transponder Antenna Impedance Validation 



Results of Grants No. PBS1/A3/3/2012 from Polish National Centre for Research and Development as well as Statutory Activity of Rzeszow University of Technology were applied in this work.


  1. 1.
    Plunkett, J.W.: Plunkett’s Telecommunications Industry Almanac 2018, 2018th edn. Plunkett Research, Houston, USA (2017)Google Scholar
  2. 2.
    Ustundag, A., Cevikcan, E.: Industry 4.0: managing the digital transformation, 1st edn. Cham, Switzerland (2018)CrossRefGoogle Scholar
  3. 3.
    Greengard, S.: The Internet of Things. The MIT Press, London, GB (2015)Google Scholar
  4. 4.
    IDTechEx: continued growth as market for RFID exceeds $10bn milestone. ID World Magazine, 38–39, Dec 2015Google Scholar
  5. 5.
    Das, R., Harrop, P.: RFID forecasts, players and opportunities 2014–2024. Report, IDTechEx (2014)Google Scholar
  6. 6.
    Ustundag, A.: The Value of RFID. Benefits vs. Costs. Springer-Verlag, London (2013). Scholar
  7. 7.
    Finkenzeller, K.: RFID Handbook – Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd edn. Wiley (2010)Google Scholar
  8. 8.
    CEPT ERC: ERC recommendation 70-03, Relating to the use of Short Range Devices (SRD). Electronic Communications Committee (2017)Google Scholar
  9. 9.
    Fernández-Salmerón, J., Rivadeneyra, A., Rodríguez, M.A.C., Capitan-Vallvey, L.F., Palma, A.J.: HF RFID tag as humidity sensor: two different approaches. IEEE Sens. J. 15(10), 5726–5733 (2015). Scholar
  10. 10.
    Jankowski-Mihułowicz, P., Kalita, W., Skoczylas, M., Węglarski, M.: Modelling and design of HF RFID passive transponders with additional energy harvester. Int. J. Antennas Propag., 1–10 (2013). Article ID 242840. Scholar
  11. 11.
    Saghlatoon, H., Mirzavand, R., Honari, M.M., Mousavi, P.: Investigation on passive booster for improving magnetic coupling of metal mounted proximity range HF RFIDs. IEEE Trans. Microw. Theory Tech. 65(9), 3401–3408 (2017). Scholar
  12. 12.
    Zamora, G., Zuffanelli, S., Aguila, P., Paredes, F., Martin, F., Bonache, J.: Broadband UHF-RFID passive tag based on split-ring resonator (SRR) and T-match network. IEEE Antennas Wirel. Propag. Lett. Accepted for publication (2018). Scholar
  13. 13.
    Jankowski-Mihułowicz, P., Kawalec, D., Węglarski, M.: Antenna design for semi-passive UHF RFID transponder with energy harvester. Radioengineering 24(3), 722–728 (2015). Scholar
  14. 14.
    Zamora, G., Zuffanelli, S., Paredes, F., Martı, F., Bonache, J.: Design and synthesis methodology for UHF-RFID tags based on the T-match network. IEEE Trans. Microw. Theory Tech. 61(12), 4090–4098 (2013). Scholar
  15. 15.
    Lu, Y., Basset, P., Laheurte, J.M.: Performance evaluation of a long-range RFID tag powered by a vibration energy harvester. IEEE Antennas Wirel. Propag. Lett. 16, 1832–1835 (2017). Scholar
  16. 16.
    Ramirez, R.A., Rojas-Nastrucci, E.A., Weller, T.M.: UHF RFID tags for On-/Off-metal applications fabricated using additive manufacturing. IEEE Antennas Wirel. Propag. Lett. 16, 1635–1638 (2017). Scholar
  17. 17.
    Zhang, Y.J., Wang, D., Tong, M.S.: An adjustable quarter-wavelength meandered dipole antenna with slotted ground for metallically and airily mounted RFID tag. IEEE Trans. Antennas Propag. 65(6), 2890–2898 (2017). Scholar
  18. 18.
    Sohrab, A.P., Huang, Y., Hussein, M.N., Carter, P.: A hybrid UHF RFID tag robust to host material. IEEE J. Radio Freq. Identif. 1(2), 163–169 (2017). Scholar
  19. 19.
    Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R.A., Virdee, B.S., Limiti, E.: Dual-band RFID tag antenna based on the Hilbert-curve fractal for HF and UHF applications. IET Circuits Devices Syst. 10(2), 140–146 (2016). Scholar
  20. 20.
    Jankowski-Mihułowicz, P., Węglarski, M: Definition, characteristics and determining parameters of antennas in terms of synthesizing the interrogation zone in RFID systems. In: Crepaldi, P.C., Pimenta T.C. (eds.) Radio Frequency Identification, Chapter 5, pp. 65–119. INTECH, Rijeka, Croatia (2017). Scholar
  21. 21.
    Taoufik, S., Dherbécourt, P., El Oualkadi, A., Temcamani, F.: Reliability and failure analysis of UHF RFID passive tags under thermal storage. IEEE Trans. Device Mater. Reliab. 17(3), 531–538 (2017). Scholar
  22. 22.
    Bauernfeind, T., Renhart, W., Alotto, P., Bíró, O.: UHF RFID antenna impedance characterization: numerical simulation of interconnection effects on the antenna impedance. IEEE Trans. Magn. 53(6), 1–4 (2017). Scholar
  23. 23.
    Jankowski-Mihułowicz, P., Pitera, G., Węglarski, M.: The impedance measurement problem in antennas for RFID technique. Metrol. Meas. Syst. 21(3), 509–520 (2014). Scholar
  24. 24.
    Jankowski-Mihułowicz, P.: Field conditions of interrogation zone in anticollision radio frequency identification systems with inductive coupling. In: Turcu, C. (eds.) Radio Frequency Identification Fundamentals and Applications Bringing Research to Practice, Chapter 1, pp. 1–26. INTECH, Rijeka, Croatia (2010)Google Scholar
  25. 25.
    Rizkalla, S., Prestros, R., Mecklenbräuker, C.F.: De-embedding transformer-based method for characterizing the chip of HF RFID cards. In: IEEE Wireless Power Transfer Conference (WPTC), pp. 1–4, Taipei (2017).
  26. 26.
    Jankowski-Mihułowicz, P., Węglarski, M.: Determination of passive and semi-passive chip parameters required for synthesis of interrogation zone in UHF RFID systems. Elektronika ir Elektrotechnika 20(9), 65–73 (2014). Scholar
  27. 27.
    Meys, R., Janssens, F.: Measuring the impedance of balanced antennas by an S-parameter method. IEEE Antennas Propag. Mag. 40(6), 62–65 (1998). Scholar
  28. 28.
    Peruzzi, M., Masson, F., Mandolesi, P., Perotoni, M.: Technique for measurement of UHF RFID balanced antennas. Electron. Lett. 54(2), 59–60 (2018). Scholar
  29. 29.
    Qing, X., Goh, C.K., Chen, Z.N.: Impedance characterization of RFID tag antennas and application in tag co-design. IEEE Trans. Microw. Theory Tech. 57(5), 1268–1274 (2009). Scholar
  30. 30.
    Cai, C., Hong, W., Deng, L., Li, S.: Impedance measurement of RFID tag antenna based on different methods. In: IEEE 5th International Symposium on Electromagnetic Compatibility, pp. 1–4, Beijing (2017).
  31. 31.
    Agilent Technologies: Advanced Calibration Techniques for Vector Network Analyzers. Modern Measurement Techniques for Testing Advanced Military Communications and Radars. 2nd edn. Agilent Technologies (2006)Google Scholar
  32. 32.
    Keysight Technologies: De-Embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note, 5980-2784EN, Keysight Technologies, USA (2017)Google Scholar
  33. 33.
    Wang, Q., Gao, Y., Fan, J., Drewniak, J., Zai, R.: Differential probe characterization. In: IEEE International Symposium on Electromagnetic Compatibility (EMC), pp. 780–785, Ottawa (2016).
  34. 34.
    Cascade Microtech: Probe Selection Guide – Impedance Standard Substrate (ISS). ProbeGuide-1017, Cascade Microtech (2017)Google Scholar
  35. 35.
    PacketMicro: TCS50 Calibration Substrate, S-Parameter Calibration and TDR Impedance Validation, Santa Clara, USA (2017)Google Scholar
  36. 36.
    Micromanipulator: Probe Tips and Probe Holders. Reference Manual, Carson City, Nevada, USA (2013)Google Scholar
  37. 37.
    NXP: NT2L1001_NT2H1001, NTAG 210μ, NFC Forum Type 2 Tag compliant IC with 48 bytes user memory. Product data sheet, Rev. 3.0, 343930 (2016)Google Scholar
  38. 38.
    AMS: SL900A EPC Class 3 Sensory Tag Chip – For Automatic Data Logging. Datasheet, v1-07 (2016)Google Scholar
  39. 39.
    Jankowski-Mihułowicz, P., Lichoń, W., Pitera, G., Węglarski, M.: Determination of the material relative permittivity in the UHF band by using T and modified ring resonators. Int. J. Electron. Telecommun. 62(2), 129–134 (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronic and Telecommunications SystemsRzeszow University of TechnologyRzeszowPoland
  2. 2.Talkin ThingsWarsawPoland

Personalised recommendations