Advertisement

Eliminating the Inertial Forces Effects on the Measurement of Robot Interaction Force

  • Piotr Gierlak
  • Andrzej Burghardt
  • Dariusz Szybicki
  • Krzysztof Kurc
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)

Abstract

The paper presents the problem of eliminating the effects of inertial forces on the measurement circuit of the forces of interaction between a robotic manipulator and its environment. Inertial forces are among the most significant interferences in force measurement circuits. The causes and effects of this interference type are discussed. A concept is discussed, based on the measurement of acceleration of a manipulator end-effector. A test rig is discussed, as used for verification testing of a procedure for eliminating the effect of inertial forces on the measurement of interaction forces. Verification test results are shown which proved that the procedure is effective. The procedure developed in this work is highly significant for practical applications in robotized machining.

Keywords

Force measurement Inertial force Robotics 

References

  1. 1.
    Robin, V., Sabourin, L., Gogu, G.: Optimization of a robotized cell with redundant architecture. Robot. CIM-Int. Manuf. 27(1), 13–21 (2011).  https://doi.org/10.1016/j.rcim.2010.06.010CrossRefGoogle Scholar
  2. 2.
    Barnfather, J.D., Goodfellow, M.J., Abram, T.: A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robot. CIM-Int. Manuf. 37, 49–56 (2016).  https://doi.org/10.1016/j.rcim.2015.06.002CrossRefGoogle Scholar
  3. 3.
    Johansson, R., Nilsson, K., Robertsson, A.: Force control. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London (2015).  https://doi.org/10.1007/978-1-4471-4670-4_108Google Scholar
  4. 4.
    Stefanescu, D. M., Anghel, M. A.: Electrical methods for force measurement-a brief survey. Measurement 46(2), 949–959 (2013).  https://doi.org/10.1016/j.measurement.2012.10.020CrossRefGoogle Scholar
  5. 5.
    Cutkosky, M.R., Provancher, W.: Force and tactile sensing. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32552-1_28CrossRefGoogle Scholar
  6. 6.
    Gierlak, P.: Hybrid position/force control in robotised machining. Sol. St. Phen. 210, 192–199 (2014).  https://doi.org/10.4028/www.scientific.net/SSP.210.192CrossRefGoogle Scholar
  7. 7.
    Gierlak, P., Burghardt, A., Szybicki, D., Szuster, M., Muszyska, M.: On-line manipulator tool condition monitoring based on vibration analysis. Mech. Syst. Signal Proc. 89, 14–26 (2017).  https://doi.org/10.1016/j.ymssp.2016.08.002CrossRefGoogle Scholar
  8. 8.
    Hendzel, Z., Burghardt, A., Gierlak, P., Szuster, M.: Conventional and fuzzy force control in robotised machining. Sol. St. Phen. 210, 178–185 (2014).  https://doi.org/10.4028/www.scientific.net/SSP.210.178CrossRefGoogle Scholar
  9. 9.
    Burghardt, A., Szybicki, D., Kurc, K., Muszyska, M., Mucha, J.: Experimental study of Inconel 718 surface treatment by edge robotic Deburring with force control. Strength Mater 49(4), 594–604 (2017).  https://doi.org/10.1007/s11223-017-9903-3CrossRefGoogle Scholar
  10. 10.
    Kumar, H., Sharma, C., Kumar, A., Arora, P. K.: Retrospective investigations of force measurement. MAPAN 30(4), 291–302 (2015).  https://doi.org/10.1007/s12647-015-0148-yCrossRefGoogle Scholar
  11. 11.
    Kumar, R., Pant, B. D., Maji, S.: Development and characterization of a diaphragm-shaped force transducer for static force measurement. MAPAN, 32(3), 167–174 (2017).  https://doi.org/10.1007/s12647-017-0207-7CrossRefGoogle Scholar
  12. 12.
    Shimachi, S., Hakozaki, Y., Tada, T., Fujiwara, Y.: Measurement of force acting on surgical instrument for force-feedback to master robot console. In: International Congress Series, vol. 1256, pp. 538–546. Elsevier (2003).  https://doi.org/10.1016/S0531-5131(03)00356-XCrossRefGoogle Scholar
  13. 13.
    Shimachi, S., Fujiwara, Y., Hakozaki, Y.: New sensing method of force acting on instrument for laparoscopic robot surgery. In: International Congress Series, vol. 1268, pp. 775–780. Elsevier (2004).  https://doi.org/10.1016/j.ics.2004.03.310CrossRefGoogle Scholar
  14. 14.
    Shimachi, S., Kameyama, F., Hakozaki, Y., Fujiwara, Y.: Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings. In: Duncan, J.S., Gerig, G. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005. MICCAI 2005. LNCS, vol. 3750, pp. 97–104. Springer, Berlin, Heidelberg (2005).  https://doi.org/10.1007/11566489_13Google Scholar
  15. 15.
    Tutak, J. S.: Virtual reality and exercises for paretic upper limb of stroke survivors. Tehniki vjesnik-Technical Gazette 24(2), 451–458 (2017).  https://doi.org/10.17559/TV-20161011143721
  16. 16.
    Giergiel, J., Kurc, K.: Identification of the mathematical model of an inspection mobile robot with fuzzy logic systems and neural networks. J. Theor. App. Mech. 49, 209–225 (2011)Google Scholar
  17. 17.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyska, M., Nawrocki, J.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik-Technical Gazette 24(2), 349–353 (2017).  https://doi.org/10.17559/TV-20160820142224
  18. 18.
    Gierlak, P.: The manipulator tool state classification based on inertia forces analysis. Mech. Syst. Signal Proc. 107, 122–136 (2018).  https://doi.org/10.1016/j.ymssp.2018.01.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr Gierlak
    • 1
  • Andrzej Burghardt
    • 1
  • Dariusz Szybicki
    • 1
  • Krzysztof Kurc
    • 1
  1. 1.Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and RoboticsRzeszow University of TechnologyRzeszowPoland

Personalised recommendations