Autoclave Sterilization Powered Medical IoT Sensor Systems

  • Mateusz DaniolEmail author
  • Lukas Böhler
  • Anton Keller
  • Ryszard Sroka
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)


The purpose of this study is to explore the possibilities of harvesting the thermal energy from steam sterilization process to power the IoT sensor node. Thermoelectrical generators based heat recovering have been used for powering IoT sensor nodes. The design process of the TEG based energy harvesting application is described in details. All vital parts of the system like choosing the suitable TEG module, heat storage material, power storage device, a power management system as well as insulation material to create the temperature gradient across the TEG were precisely described. The temperature-voltage characteristics of the module are analyzed within the test setup of standard steam sterilization. Power consumption of a CC2650 Bluetooth module is analyzed and optimized to maximize the power efficiency and the lifetime. During this study self powered Bluetooth IoT sensor node was developed. Power consumption software optimization have been applied resulting in the lifetime of over 10 days after single sterilization cycle.


Energy harvesting Steam sterilization Sensors IoT 


  1. 1.
    David, A.: The Digital Future of Healthcare (2017)Google Scholar
  2. 2.
    Kanan, R., Elhassan, O.: Batteryless radio system for hospital application. In: Proceedings of 2016 SAI Computing Conference, SAI 2016, pp. 939–945 (2016).
  3. 3.
    Huang, A., et al.: The SmartOR: a distributed sensor network to improve operating room efficiency. Surgical Endoscopy Other Interv. Techn. (2017). Scholar
  4. 4.
    Mahfouz, M., To, G., Kuhn, M.: Smart instruments: wireless technology invades the operating room. In: RWW 2012—Proceedings: 2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, BioWireleSS 2012 (2012).
  5. 5.
    Zhang, H., Li, J., Wen, B., Xun, Y., Liu, J.: Connecting Intelligent Things in Smart Hospitals using NB-IoT. IEEE Int. Things J. 4662(c), 1–11 (2018). Scholar
  6. 6.
    Lin, X., Salari, M., Arava, L.M.R., Ajayan, P.M., Grinstaff, M.W.: High temperature electrical energy storage: advances, challenges, and frontiers. Chem. Soc. Rev. 45(21), 5848–5887 (2016). Scholar
  7. 7.
    Bandhauer, T.M., Garimella, S., Fuller, T.F.: A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158(3), R1 (2011). Scholar
  8. 8.
    Spotnitz, R., Franklin, J.: Abuse behavior of high-power, lithium-ion cells. J. Power Sour. 113(1), 81–100 (2003). Scholar
  9. 9.
    Hammami, A., Raymond, N., Armand, M.: Runaway risk of forming toxic compounds. Nature 424, 635 (2003). Scholar
  10. 10.
    Cooley, J., Signorelli, R., Green, M., Sasthan, P., Deane, C., Wilhelmus, L.A.: Power system for high temperature applications with rechargeable energy storage (2012)Google Scholar
  11. 11.
    Smith, P.H., Tran, T.N., Jiang, T.L., Chung, J.: Lithium-ion capacitors: electrochemical performance and thermal behavior. J. Power Sour. 243, 982–992 (2013). Scholar
  12. 12.
    Chen, W.H., Wu, P.H., Wang, X.D., Lin, Y.L.: Power output and efficiency of a thermoelectric generator under temperature control. Energy Convers. Manag. 127, 404–415 (2016). Scholar
  13. 13.
    Champier, D.: Thermoelectric generators: a review of applications (2017). Scholar
  14. 14.
    Chen, W.H., Huang, S.R., Wang, X.D., Wu, P.H., Lin, Y.L.: Performance of a thermoelectric generator intensified by temperature oscillation. Energy 133, 257–269 (2017). Scholar
  15. 15.
    Kanan, R., Bensalem, R.: Energy harvesting for wearable wireless health care systems. In: 2016 IEEE Wireless Communications and Networking Conference, vol. 2016-Septe, pp. 1–6 (2016).
  16. 16.
    Lundager, K., Zeinali, B., Tohidi, M., Madsen, J., Moradi, F.: Low power design for future wearable and implantable devices. J. Low Power Electron. Appl. 6(4) (2016). Scholar
  17. 17.
    Buist, R.J., Lau, P.G.: Thermoelectric power generator design and selection from TE cooling module specifications. In: XVI International Conference on Thermoelectrics, 1997 Proceedings ICT 1997. (616), pp. 551–554 (1997).
  18. 18.
    Lineykin, S., Ruchaevsky, I., Kuperman, A.: Analysis and optimization of TEG-heatsink waste energy harvesting system for low temperature gradients. In: 2014 16th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2014 pp. 1–10 (2014).
  19. 19.
    Alva, G., Liu, L., Huang, X., Fang, G.: Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable. Energy Rev. 68, 693–706 (2017). Scholar
  20. 20.
    Laird, I., Lu, D.C.: High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator. IEEE Trans. Power Electron. 28, 7 (2013). Scholar
  21. 21.
    Thielen, M., Sigrist, L., Magno, M., Hierold, C., Benini, L.: Human body heat for powering wearable devices: from thermal energy to application. Energy Convers. Manag. 131 (2017). Scholar
  22. 22.
    Hui, J.W., Culler, D.E.: IPv6 in low-power wireless networks. Proc. IEEE 98(11), 1865–1878 (2010). Scholar
  23. 23.
    Muhammad, A.P., Akram, M.U., Khan, M.A.: Survey based analysis of internet of things based architectural framework for hospital management system. In: 2015 13th International Conference on Frontiers of Information Technology (FIT), pp. 271–276 (2015).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mateusz Daniol
    • 1
    • 2
    Email author
  • Lukas Böhler
    • 1
    • 2
  • Anton Keller
    • 1
  • Ryszard Sroka
    • 2
  1. 1.Aesculap AG, Am Aesculap-PlatzTuttlingenGermany
  2. 2.Department of Metrology and ElectronicsAGH University of Science and TechnologyCracowPoland

Personalised recommendations