Advertisement

Robot-Assisted Quality Inspection of Turbojet Engine Blades

  • Dariusz Szybicki
  • Andrzej Burghardt
  • Piotr Gierlak
  • Krzysztof Kurc
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)

Abstract

This paper presents the design and construction of a module for measuring the geometry and orientation of turbojet engine blades. The measurement module forms a component of a robotic processing station for grinding of turbojet engine blades. The robotic processing station comprises an industrial robot manipulator with a dedicated gripper, the measurement module with proximity sensors, and blade grinding tooling components. The measurement outputs were transferred by TCP from the measurement module to the controller of the robot manipulator. The measurement outputs could be applied in blade grinding, displayed on a control panel, or processed into a measurement test report.

Keywords

Robotic measurement Blade inspection Turbojet engine blades 

References

  1. 1.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Szczęch, T.: Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesn.-Tech. Gaz. 24(Supplement 2), 345–348 (2017)Google Scholar
  2. 2.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Nawrocki, J.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesn.-Tech. Gaz. 24(Supplement 2), 349–353 (2017)Google Scholar
  3. 3.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Nawrocki, J.: Robot-operated quality control station based on the UTT method. Open Eng. 7(1), 37–42 (2017)CrossRefGoogle Scholar
  4. 4.
    Gierlak, P., Burghardt, A., Szybicki, D., Szuster, M., Muszyńska, M.: On-line manipulator tool condition monitoring based on vibration analysis. Mech. Syst. Signal Process. 89, 14–26 (2017)CrossRefGoogle Scholar
  5. 5.
    Gierlak, P.: Hybrid position/force control in robotised machining. Solid State Phenom. 210, 192–199 (2014)CrossRefGoogle Scholar
  6. 6.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Szczęch, T.: Monitoring the parameters of the robot-operated quality control process. Adv. Sci. Technol. Res. J. 11(1), 232–236 (2017)CrossRefGoogle Scholar
  7. 7.
    Burghardt, A., Szybicki, D., Kurc, K., Muszyńska, M., Mucha, J.: Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength Mater. 49(4), 594–604 (2017)CrossRefGoogle Scholar
  8. 8.
    Hendzel, Z., Burghardt, A., Gierlak, P., Szuster, M.: Conventional and fuzzy force control in robotised machining. Solid State Phenom. 210, 178–185 (2014)CrossRefGoogle Scholar
  9. 9.
    Yilmaz, O., Gindy, N., Gao, J.: A repair and overhaul methodology for aeroengine components. Robot. Comput.-Integr. Manuf. 26(2), 190–201 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhao, P., Shi, Y.: Posture adaptive control of the flexible grinding head for blisk manufacturing. Int. J. Adv. Manuf. Technol. 70(9–12), 1989–2001 (2014)CrossRefGoogle Scholar
  11. 11.
    Zhsao, P., Shi, Y.: Composite adaptive control of belt polishing force for aero-engine blade. Chin. J. Mech. Eng. 26(5), 988–996 (2013)CrossRefGoogle Scholar
  12. 12.
    Xu, X., Zhu, D., Zhang, H., Yan, S., Ding, H.: TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. Int. J. Adv. Manuf. Technol. 90(1–4), 635–647 (2017)CrossRefGoogle Scholar
  13. 13.
    Li, W.L., Xie, H., Zhang, G., Yan, S.J., Yin, Z.: P: hand-eye calibration in visually-guided robot grinding. IEEE Trans. Cybern. 46(11), 2634–2642 (2016)CrossRefGoogle Scholar
  14. 14.
    Li, W.L., Xie, H., Zhang, G., Yan, S.J., Yin, Z.P.: 3-D shape matching of a blade surface in robotic grinding applications. IEEE/ASME Trans. Mechatron. 21(5), 2294–2306 (2016)CrossRefGoogle Scholar
  15. 15.
    Sun, B., Li, B.: Laser displacement sensor in the application of aero-engine blade measurement. IEEE Sens. J. 16(5), 1377–1384 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Qi, L., Gan, Z., Yun, C., Tang, Q.: A novel method for aero engine blade removed-material measurement based on the robotic 3D scanning system. In: 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), vol. 4, pp. 72–75 (2010)Google Scholar
  17. 17.
    Zhang, Y., Chen, Z. T., Ning, T.: Efficient measurement of aero-engine blade considering uncertainties in adaptive machining. Int. J. Adv. Manuf. Technol. 86(1–4), 387–396 (2016)CrossRefGoogle Scholar
  18. 18.
    Kohut, P., Holak, K., Martowicz, A.: An uncertainty propagation in developed vision based measurement system aided by numerical and experimental tests. J. Theor. Appl. Mech. 50(4), 1049–1061 (2012)Google Scholar
  19. 19.
    Godzimirski, J.: New technologies of aviation turbine engines. Works of the Institute of Aviation (in Polish) (4 (213)), 22–36 (2011)Google Scholar
  20. 20.
    Budzik, G.: Geometric accuracy of aircraft engine turbine blades. Rzeszow University of Technology Publisher (in Polish), 22–34 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dariusz Szybicki
    • 1
  • Andrzej Burghardt
    • 1
  • Piotr Gierlak
    • 1
  • Krzysztof Kurc
    • 1
  1. 1.Rzeszow University of TechnologyRzeszowPoland

Personalised recommendations