Advertisement

The Concept of Measuring Luminous Flux Distribution Emitted from Sports Facilities Using Unmanned Aerial Vehicles

  • Magdalena SielachowskaEmail author
  • Damian Tyniecki
  • Maciej Zajkowski
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)

Abstract

The dynamic development of cities is associated with a significant increase in the luminance of architectural buildings, advertisements or usable spaces. Objects that emit a significant amount of luminous flux to the environment are also various types of sports buildings, such as city stadiums, football pitches or tennis courts. The need to protect the environment determinates the need to reduce and prevent the effect of light pollution. The article analyzes the possibilities of using unmanned aerial vehicles to assess light pollution by measuring the distribution of luminous flux emitted by sports facilities. The method of light measurement based on a goniometric system using unmanned aerial vehicles was presented and their positioning in three-dimensional space was taken into account. A method for controlling the photometric probe and calibrating the measurement system has been proposed.

Keywords

Light pollution Luminous flux Unmanned aerial vehicles 

References

  1. 1.
    IES RP-6-15 Sports and Recreational Area Lighting, Illuminating Engineering Society, New York (2015)Google Scholar
  2. 2.
    PN-EN 12193:2008 Światło i oświetlenie - Oświetlenie w sporcie, PKN, Warszawa (2008)Google Scholar
  3. 3.
    FIFA: Football Stadiums Technical Recommendations and Requirements, Switzerland (2007)Google Scholar
  4. 4.
    Ściężor, T.: Almanach Astronomiczny na rok 2018. Polskie Towarzystwo Astronomiczne, Warszawa (2017)Google Scholar
  5. 5.
    Bortle, J.E.: Introducing the Bortle Dark-Sky Scale. Sky & Telescope, pp. 126–129, February 2001Google Scholar
  6. 6.
  7. 7.
    Cinzano, P.: Night Sky Photometry with Sky Quality Meter, ISTIL Internal Report n. 9, v.1.4 Thiene (2005)Google Scholar
  8. 8.
    Hanel, A., Posch, T., Ribas, S.J., Aube, M., Duriscoe, D., Jechow, A., Kollath, Z., Lolkema, D.E., Moore, C., Schmidt, N., Spoelstra, H., Wuchterl, G., Kyba, C.C.M.: Measuring night sky brightness: methods and challenges. J. Quantitative Spectrosc. Radiat. Transf. (2017)Google Scholar
  9. 9.
    Muller, A., Wuchterl, G., Sarazin, M.: Measuring the night sky brightness with the lightmeter. Revista Mexicana de Astronoma y Astrofisica 41, 46–49 (2011)Google Scholar
  10. 10.
  11. 11.
    Żagan, W.: Podstawy techniki świetlnej. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2005)Google Scholar
  12. 12.
    Tabaka, P., Fryc, I.: Zależność poziomu zanieczyszczenia otoczenia światłem od kształtu krzywej światłości użytkowanej oprawy oświetleniowej. Kosmos problemy nauk biologicznych. T:64, 4(309), 669–677 (2015)Google Scholar
  13. 13.
    Kowalik, R., Bieńczak, R., Komorek, A.: Wyznaczanie dokładności pozycji obiektów ruchomych w przestrzeni 3d. Autobusy 12, 1038–1042 (2016)Google Scholar
  14. 14.
    Brandford, W., Parkinson. James. J. Spilker Jr.: Global Positioning System: Theory and Applications, vol. 1, American Institute of Aeronautics and Astronautics, Inc. Washington (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Magdalena Sielachowska
    • 1
    Email author
  • Damian Tyniecki
    • 1
  • Maciej Zajkowski
    • 1
  1. 1.Bialystok University of TechnologyBialystokPoland

Personalised recommendations