Advertisement

Heat Resistant Monitoring System for Medical Sterile Containers

  • Lukas BöhlerEmail author
  • Mateusz Daniol
  • Anton Keller
  • Ryszard Sroka
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)

Abstract

In this paper we focus on the issue of the increasing amount of treatments in modern hospitals and the need to increase on the one hand the efficiency and on the other hand to decrease costs without decreasing the safety. Therefore, this research is about the development of a tracking and sensor system, applicable in medical sterile containers including a thermal insulation protecting the electronics against the sterilisation process. Using this system can increase the efficiency by tracking the containers within a hospital and signalizing its status. For this reason different tracking technologies were discussed and sterilisation tests with several RFID transponders were made. Furthermore, the shown sensor system can increase the safety by providing data about the last sterilisation process and the overall state of the sterile container.

Keywords

Tracking Sensors RFID Sterilisation Safety Digitalisation 

References

  1. 1.
    Choi, J.H., Fortsch, S.M., Park, I., Jung, I.: Efficiency of U.S. hospitals between 2001 and 2011. Managerial Decis. Econ. 38(8), 1071–1081 (2017).  https://doi.org/10.1002/mde.2846CrossRefGoogle Scholar
  2. 2.
    Moatari-Kazerouni, A., Bendavid, Y.: Improving logistics processes of surgical instruments: case of rfid technology. Bus. Process Manag. J. 23(2), 448–466 (2017).  https://doi.org/10.1108/BPMJ-06-2016-0127CrossRefGoogle Scholar
  3. 3.
    Diamant, A., Milner, J., Quereshy, F., Xu, B.: Inventory management of reusable surgical supplies. Health care Manag. Sci. (2017).  https://doi.org/10.1007/s10729-017-9397-3CrossRefGoogle Scholar
  4. 4.
    Chang, Y., Dong, X., Sun, W.: Influence of characteristics of the internet of things on consumer purchase intention. Soc. Beh. Personal. Int. J. 42(2), 321–330, (2014).  https://doi.org/10.2224/sbp.2014.42.2.321CrossRefGoogle Scholar
  5. 5.
    Sisinni, E., Depari, A., Flammini, A.: Design and implementation of a wireless sensor network for temperature sensing in hostile environments. Sens. Actuators A: Phys. 237, 47–55 (2016).  https://doi.org/10.1016/j.sna.2015.11.012CrossRefGoogle Scholar
  6. 6.
    Yin, Y., Zeng, Y., Chen, X., Fan, Y.: The internet of things in healthcare: an overview. J. Ind. Inf. Integr. 1, 3–13 (2016).  https://doi.org/10.1016/j.jii.2016.03.004CrossRefGoogle Scholar
  7. 7.
    Childers, R.W., Henniges, B., Hassler, W., Blandino, T., Jeng, D., Morris, R.F.: Sterilization container with battery powered sensor module for monitoring the environment in the container (2015). WO002015138461A1Google Scholar
  8. 8.
    Childers, R.W., Chmelar, E.V., Dudycha, A., Henniges, B., Miller, M., Moaiery, A., Purrenhage, B.J.: Sterilization container capable of providing an indication regarding whether or not surgical instruments sterilized in the container were properly sterilized. WO002014159696A1 (2014)Google Scholar
  9. 9.
    Wehrle, C., Nonnenmann, M.: Surgical container contents detection system (2016). WO002016188959A1Google Scholar
  10. 10.
    Schuster, S.: Medizinischer sterilbehälter und verfahren zum bestimmen des sterilisationsstatus eines medizinischen sterilbehälters (2013)Google Scholar
  11. 11.
    Dobircau, A., Folea, S., Valean, H., Bordencea, D.: Indoor localization system based on low power wi-fi technology. In: 2011 19th Telecommunications Forum (TELFOR) Proceedings of Papers, pp. 317–320. IEEE (2011).  https://doi.org/10.1109/TELFOR.2011.6143553
  12. 12.
    Torteeka, P., Chundi, X., Dongkai, Y.: Hybrid technique for indoor positioning system based on wi-fi received signal strength indication. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 48–57. IEEE (2014).  https://doi.org/10.1109/IPIN.2014.7275467
  13. 13.
    Oosterlinck, D., Benoit, D.F., Baecke, P., van de Weghe, N.: Bluetooth tracking of humans in an indoor environment: an application to shopping mall visits. Appl. Geograph. 78, 55–65 (2017).  https://doi.org/10.1016/j.apgeog.2016.11.005CrossRefGoogle Scholar
  14. 14.
    Hanada, E., Hayashi, M., Ohira, A.: Introduction of an rfid tag system to a large hospital and the practical usage of the data obtained. In: 2015 9th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 108–111. IEEE, Piscataway, NJ (2015).  https://doi.org/10.1109/ISMICT.2015.7107508
  15. 15.
    Lee, C., Palaniappan, S.: Effective asset management for hospitals with rfid. In: 2014 IEEE International Technology Management Conference (ITMC), pp. 1–4. IEEE, Piscataway, NJ (2014).  https://doi.org/10.1109/ITMC.2014.6918596
  16. 16.
    Turgut, Z., Aydin, G.Z.G., Sertbas, A.: Indoor localization techniques for smart building environment. Proced. Comput. Sci. 83, 1176–1181 (2016).  https://doi.org/10.1016/j.procs.2016.04.242CrossRefGoogle Scholar
  17. 17.
    Chen, C., Han, Y., Chen, Y., Liu, K.J.R.: Indoor gps with centimeter accuracy using wifi. In: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1–4. IEEE, Piscataway, NJ (2016).  https://doi.org/10.1109/APSIPA.2016.7820842
  18. 18.
    Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M.A., Al-Khalifa, : H.S.: Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors (Basel, Switzerland) 16(5) (2016).  https://doi.org/10.3390/s16050707CrossRefGoogle Scholar
  19. 19.
    Gunia, M., Protze, F., Joram, N., Ellinger, F.: Setting up an ultra-wideband positioning system using off-the-shelf components. In: 2016 13th Workshop on Positioning, Navigation and Communications (WPNC), pp. 1–6. IEEE (2016).  https://doi.org/10.1109/WPNC.2016.7822860
  20. 20.
    Jiang, L., Hoe, L.N., Loon, L.L.: Integrated uwb and gps location sensing system in hospital environment. In: I. Staff (ed.) 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 286–289. I E E E, [Place of publication not identified] (2010).  https://doi.org/10.1109/ICIEA.2010.5516828
  21. 21.
    Mahfouz, M.R., Kuhn, M.J., Wang, Y., Turnmire, J., Fathy, A.E.: Towards sub-millimeter accuracy in uwb positioning for indoor medical environments. In: 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, pp. 83–86. IEEE (2011).  https://doi.org/10.1109/BIOWIRELESS.2011.5724360
  22. 22.
    Monica, S., Ferrari, G.: Accurate indoor localization with uwb wireless sensor networks. In: Reddy, S.M. (ed.) 2014 IEEE 23rd International WETICE Conference (WETICE), pp. 287–289. IEEE, Piscataway, NJ (2014).  https://doi.org/10.1109/WETICE.2014.41
  23. 23.
    Ben Kilani, M., Raymond, A.J., Gagnon, F., Gagnon, G., Lavoie, P.: Rssi-based indoor tracking using the extended kalman filter and circularly polarized antennas. In: 2014 11th Workshop on Positioning, Navigation and Communication (WPNC), pp. 1–6. IEEE (2014).  https://doi.org/10.1109/WPNC.2014.6843305
  24. 24.
    Wang, Z., Ye, N., Malekian, R., Xiao, F., Wang, R.: Trackt: accurate tracking of rfid tags with mm-level accuracy using first-order taylor series approximation. Ad Hoc Netw. 53, 132–144 (2016).  https://doi.org/10.1016/j.adhoc.2016.09.026CrossRefGoogle Scholar
  25. 25.
    Bisio, I., Sciarrone, A., Zappatore, S.: Asset tracking solution with ble and smartphones: an energy/position accuracy trade-off. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE, Piscataway, NJ and Piscataway, NJ (2015).  https://doi.org/10.1109/GLOCOM.2015.7417782
  26. 26.
    Bisio, I., Sciarrone, A., Zappatore, S.: A new asset tracking architecture integrating rfid, bluetooth low energy tags and ad hoc smartphone applications. Pervasive Mobile Comput. 31, 79–93 (2016).  https://doi.org/10.1016/j.pmcj.2016.01.002CrossRefGoogle Scholar
  27. 27.
    Shirehjini, A.A.N., Yassine, A., Shirmohammadi, S.: Equipment location in hospitals using rfid-based positioning system. IEEE Trans. Inf. Technol. Biomed. 16(6), 1058–1069 (2012).  https://doi.org/10.1109/TITB.2012.2204896CrossRefGoogle Scholar
  28. 28.
    Liang, Y., Wu, H., Huang, G., Yang, J., Wang, H.: Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy Build. 154, 606–617 (2017).  https://doi.org/10.1016/j.enbuild.2017.08.085CrossRefGoogle Scholar
  29. 29.
    Nocentini, K., Achard, P., Biwole, P.: Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build. 158, 14–22 (2018).  https://doi.org/10.1016/j.enbuild.2017.10.024CrossRefGoogle Scholar
  30. 30.
    Karami, S., Motahari, S., Pishvaei, M., Eskandari, N.: Improvement of thermal properties of pigmented acrylic resin using silica aerogel. J. Appl. Polym. Sci. 135(1), 45,640 (2018)  https://doi.org/10.1002/app.45640CrossRefGoogle Scholar
  31. 31.
    Kiil, S.: Quantitative analysis of silica aerogel-based thermal insulation coatings. Progress Organic Coat. 89(26–34), 26–34 (2015).  https://doi.org/10.1016/j.porgcoat.2015.07.019. http://www.sciencedirect.com/science/article/pii/S030094401530062XCrossRefGoogle Scholar
  32. 32.
    Feng, X., et al.: Characterization of large format lithium ion battery exposed to extremely high temperature. J. Power Sour. 272, 457–467 (2014).  https://doi.org/10.1016/j.jpowsour.2014.08.094CrossRefGoogle Scholar
  33. 33.
    Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sour. 208, 210–224 (2012).  https://doi.org/10.1016/j.jpowsour.2012.02.038CrossRefGoogle Scholar
  34. 34.
    Meekhun, D., Boitier, V., Dilhac, J.M.: Study of the ambient temperature effect on the characteristics and the lifetime of nickel-metal hydride secondary battery. In: IEEE Electrical Power & Energy Conference (EPEC), 2009, pp. 1–4. IEEE, Piscataway, NJ (2009).  https://doi.org/10.1109/EPEC.2009.5420772
  35. 35.
    Calderoni, L., Ferrara, M., Franco, A., Maio, D.: Indoor localization in a hospital environment using random forest classifiers. Expert Syst. Appl. 42(1), 125–134 (2015).  https://doi.org/10.1016/j.eswa.2014.07.042CrossRefGoogle Scholar
  36. 36.
    Fisher, J.A., Monahan, T.: Evaluation of real-time location systems in their hospital contexts. Int. J. Med. Inf. 81(10), 705–712 (2012).  https://doi.org/10.1016/j.ijmedinf.2012.07.001CrossRefGoogle Scholar
  37. 37.
    Han, G., Klinker, G.J., Ostler, D., Schneider, A.: Testing a proximity-based location tracking system with bluetooth low energy tags for future use in the or. In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), pp. 17–21. IEEE (2015).  https://doi.org/10.1109/HealthCom.2015.7454466
  38. 38.
    Hosaka, R., Murohashi, T.: Experimental trial to detect medical engineering equipments in hospital by passive uhf rfid tag. ISMICT, 81–84 (2013).  https://doi.org/10.1109/ISMICT.2013.6521704
  39. 39.
    Ionescu, G., Martinez de la Osa, C., Deriaz, M.: Improving distance estimation in object localisation with bluetooth low energy. SENSORCOMM, 45–50 (2014)Google Scholar
  40. 40.
    Malajner, M., Planinsic, P., Gleich, D.: Uwb ranging accuracy. In: Liatsis, P., Uus, A., Miah, S. (eds.) 2015 International Conference on Systems, Signals and Image Processing (IWSSIP 2015), pp. 61–64. IEEE, Piscataway, NJ and Piscataway, NJ (2015).  https://doi.org/10.1109/IWSSIP.2015.7314177
  41. 41.
    Seong, J.H., Choi, E.C., Lee, J.S., Seo, D.H.: High-speed positioning and automatic updating technique using wi-fi and uwb in a ship. Wirel. Pers. Commun. 94(3), 1105–1121 (2017).  https://doi.org/10.1007/s11277-016-3673-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lukas Böhler
    • 1
    • 2
    Email author
  • Mateusz Daniol
    • 1
    • 2
  • Anton Keller
    • 1
  • Ryszard Sroka
    • 2
  1. 1.Aesculap AG, Am Aesculap-PlatzTuttlingenGermany
  2. 2.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations