Advertisement

Non-contact Robotic Measurement of Jet Engine Components with 3D Optical Scanner and UTT Method

  • Krzysztof Kurc
  • Andrzej Burghardt
  • Piotr Gierlak
  • Dariusz Szybicki
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 548)

Abstract

This paper presents a method for the robot-assisted geometric inspection of an aircraft engine turbine stator segment, involving two robots. The first robot was an ABB IRB 1600 with an optical 3D scanner. The second robot was an ABB IRB 140, to automatically inspect the stator vanes at 168 points by the application of a UTT method. If the casting geometry tolerances are met, characteristic coordinates of points across the casting are determined for their further use during an alternative robot-assisted vane wall thickness measurement process. The operating principle of the test stand measurement system is presented, with a specific focus on the measurement strategy. The results of the wall thickness measurements performed on stator vanes are presented in the report. The correctness of the solution has been proved with scans and measurements of two turbine rotor guide vane segments of an aircraft engine provided by courtesy of Consolidated Precision Products Poland sp. z o.o.

Keywords

3D scanning measurement UTT measurement Robot Aircraft engine Geometry inspection Vane thickness measurement 

References

  1. 1.
    Gierlak, P., Burghardt, A., Szybicki, D., Szuster, M., Muszyńska, M.: On-line manipulator tool condition monitoring based on vibration analysis. Mech. Syst. Signal Process. 89, 14–26 (2017)CrossRefGoogle Scholar
  2. 2.
    Giergiel, J., Kurc, K.: Identification of the mathematical model of an inspection mobile robot with fuzzy logic systems and neural networks. J. Theor. Appl. Mech. 49, 209–225 (2011)Google Scholar
  3. 3.
    Tutak, J.S.: Virtual reality and exercises for paretic upper limb of stroke survivors. Tehnički vjesnik 24 (Supplement 2), 451–458 (2017)Google Scholar
  4. 4.
    Kurc, K., Szybicki, D., Burghardt, A., Muszyńska, M.: The application of virtual prototyping methods to determine the dynamic parameters of mobile robot. Open Eng. 6(1), 55–63 (2016)CrossRefGoogle Scholar
  5. 5.
    Tutak, J.S.: Design of ELISE robot for the paretic upper limb of stroke survivors. J. Vibroengineering 18(6), 4069–4085 (2016)CrossRefGoogle Scholar
  6. 6.
    Kohut, P., Kurc, K., Szybicki, D., Cioch, W., Burdzik, R.: 1823. Vision-based motion analysis and deflection measurement of a robot’s crawler unit. J. Vibroengineering 17(8), 4112–4121 (2015)Google Scholar
  7. 7.
    Kohut, P., Holak, K., Dworakowski, Z., Mendrok, K.: Vision-based measurement systems for static and dynamic characteristics of overhead lines. J. Vibroengineering 18(4), 2113–2122 (2016)CrossRefGoogle Scholar
  8. 8.
    Trojnacki, M., Dąbek, P.: Determination of motion parameters with inertial measurement units–Part 2: algorithm verification with a four-wheeled mobile robot and low-cost MEMS sensors. In: Mechatronics-Ideas for Industrial Application, pp. 253–267. Springer, Cham (2015)Google Scholar
  9. 9.
    Kohut, P., Holak, K., Martowicz, A.: An uncertainty propagation in developed vision based measurement system aided by numerical and experimental tests. J. Theor. Appl. Mech. 50(4), 1049–1061 (2012)Google Scholar
  10. 10.
    Burghardt, A., Szybicki, D., Kurc, K., Muszyńska, M., Mucha, J.: Experimental Study of Inconel 718 surface treatment by edge robotic Deburring with force control. Strength Mater. 49(4), 594–604 (2017)CrossRefGoogle Scholar
  11. 11.
    Sieniawski, J.: Nickel and titanium alloys in aircraft turbine engines. Adv. Manuf. Sci. Technol. 27(3), 23–33 (2003)Google Scholar
  12. 12.
    Carl, V., Becker, E., Sperling, A.: Thermography inspection system for gas turbine blades. In: 7th European Conference on non-destructive testing, pp. 2658–2665. Copenhagen (1998)Google Scholar
  13. 13.
    Kilian, D.: 3D tomography of turbine blades. In: Proceedings of the International Symposium of Computerized Tomography for Industrial Applications, vol. 31, pp. 1–17. Berlin (1999)Google Scholar
  14. 14.
    Le Bihan, Y., Joubert, P.Y., Placko, D.: Wall thickness evaluation of single-crystal hollow blades by eddy current sensor. NDT E Int. 34(5), 363–368 (2001)CrossRefGoogle Scholar
  15. 15.
    Lane, C.: The development of a 2D ultrasonic array inspection for single crystal turbine blades. Springer Theses. pp. 63–79. Springer International Publishing, Switzerland (2014)Google Scholar
  16. 16.
    Krause, M., et al.: Comparison of pulse-echo methods for testing concrete. NDT E Int. 30(4), 195–204 (1997)CrossRefGoogle Scholar
  17. 17.
    Chakroun, N., Fink, M.A., Wu, F.: Time reversal processing in ultrasonic nondestructive testing. IEEE Trans. Ultrasonics Ferroelectrics Freq. Control 42(6), 1087–1098 (1995)CrossRefGoogle Scholar
  18. 18.
    Schindel, D.W., Hutchins, D.A., Grandia, W.A.: Capacitive and piezoelectric air-coupled transducers for resonant ultrasonic inspection. Ultrasonics 34(6), 621–627 (1996)CrossRefGoogle Scholar
  19. 19.
    Garnier, C., Pastor, M.L., Eyma, F., Lorrain, B.: The detection of aeronautical defects in situ on composite structures using non destructive testing. Compos. Struct. 93(5), 1328–1336 (2011)CrossRefGoogle Scholar
  20. 20.
    D’orazio, T., Leo, M., Distante, A., Guaragnella, C., Pianese, V., Cavaccini, G.: Automatic ultrasonic inspection for internal defect detection in composite materials. NDT e Int. 41(2), 145–154 (2008)CrossRefGoogle Scholar
  21. 21.
    Tanase, L., Margaritescu, M.: Quality control of product/process using nondestructive control and possibilities of robotic investigation. In: SIOEL’99: Sixth Symposium on Optoelectronics, vol. 4068, pp. 364–375. International Society for Optics and Photonics (2000, February)Google Scholar
  22. 22.
    Yao, Y., Liu, S., Zhang, W.: Regeneration of silica gel using high-intensity ultrasonic under low temperatures. Energy Fuels 23(1), 457–463 (2008)CrossRefGoogle Scholar
  23. 23.
    Steiner, K.V.: Defect classifications in composites using ultrasonic nondestructive evaluation techniques. In: Damage Detection in Composite Materials. ASTM International (1992)Google Scholar
  24. 24.
    Kersting, T., Schönartz, N., Oesterlein, L., Liessem, A.: High end inspection by filmless radiography on LSAW large diameter pipes. NDT E Int. 43(3), 206–209 (2010)CrossRefGoogle Scholar
  25. 25.
    Mineo, C., Pierce, S.G., Nicholson, P.I., Cooper, I.: Robotic path planning for non-destructive testing–A custom MATLAB toolbox approach. Robot. Comput. Integr. Manuf. 37, 1–12 (2016)CrossRefGoogle Scholar
  26. 26.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Szczęch, T.: Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesnik-Technical Gazette 24(Supplement 2), 345–348 (2017)Google Scholar
  27. 27.
    Liu, B., et al.: Virtual plate pre-bending for the long bone fracture based on axis pre-alignment. Comput. Med. Imaging Gr. 38(4), 233–244 (2014)CrossRefGoogle Scholar
  28. 28.
    Lavoué, G., Tola, M., Dupont, F., Lavou, G.: MEPP-3D mesh processing platform. In: GRAPP/IVAPP, 206–210 (2012)Google Scholar
  29. 29.
    Brajlih, T., et al.: Possibilities of using three-dimensional optical scanning in complex geometrical inspection. Strojniški vestnik-Journal of Mechanical Engineering 57(11), 826–833 (2011)CrossRefGoogle Scholar
  30. 30.
    GOM. Quality control of injection moulded parts, from http://www.gom.com/EN/B0C.html. Accessed 31 May 2009
  31. 31.
    Dúbravčík, M., Kender, Š.: Application of reverse engineering techniques in mechanics system services. Proced. Eng. 48, 96–104 (2012)CrossRefGoogle Scholar
  32. 32.
    Paulic, M., Irgolic, T., Balic, J., Cus, F., Cupar, A., Brajlih, T., Drstvensek, I.: Reverse engineering of parts with optical scanning and additive manufacturing. Proced. Eng. 69, 795–803 (2014)CrossRefGoogle Scholar
  33. 33.
    Pogacar, V.: Integrated renaissance of design. In: Proceedings of the 1st DAAAM International specialized conference on additive technologies, pp. 9–12. Celje (2007)Google Scholar
  34. 34.
    Min, Z.H.O.U.: A new approach of composite surface reconstruction based on reverse engineering. Proced. Eng. 23, 594–599 (2011)CrossRefGoogle Scholar
  35. 35.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Szczęch, T.: Monitoring the parameters of the robot-operated quality control process. Adv. Sci. Technol. Res. J. 11(1), 232–236 (2017)CrossRefGoogle Scholar
  36. 36.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Nawrocki, J.: Robot-operated quality control station based on the UTT method. Open Eng. 7(1), 37–42 (2017)CrossRefGoogle Scholar
  37. 37.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Nawrocki, J.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik-Technical Gazette 24(Supplement 2), 349–353 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Rzeszow University of TechnologyRzeszówPoland

Personalised recommendations