Advertisement

Bone Adaptation as Level Set Motion

  • Bryce A. Besler
  • Leigh Gabel
  • Lauren A. Burt
  • Nils D. Forkert
  • Steven K. Boyd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11404)

Abstract

Bone microarchitecture is constantly adapting to environmental and mechanical factors. Changes in bone density and structure can lead to an increase in fracture risk. Computational modeling of bone adaptation may provide insight into mitigating aging and preventing disease. In this paper, the adaptation of bone is modeled as a curve evolution problem. Curves can be evolved according to the level set method. The level set method models basic bone physiology by adapting bone according to appositional growth following a trajectory in time with a natural definition of homeostasis. A novel curvature based bone adaptation algorithm is presented for modeling bone atrophy. The algorithm is shown to be weakly equivalent to simulated bone atrophy. These results generalize surface-driven and strain-driven models of bone adaptation using a surface remodeling force. Physiological signals (hormones, mechanical strain, etc.) can be directly integrated into this surface remodeling force. Remodeling can be naturally restricted around foreign bodies (such as modeling adaptation around a surgical screw). Future work aims to identify the surface remodeling force from longitudinal image data.

Keywords

Level set method Bone adaptation Cancellous bone Finite difference method 

Notes

Acknowledgements

B.A. Besler acknowledges support from Alberta Innovates Health Solutions and NSERC CGS-D.

References

  1. 1.
    Clarke, B.: Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3(Suppl. 3), S131–S139 (2008).  https://doi.org/10.2215/CJN.04151206CrossRefGoogle Scholar
  2. 2.
    Frost, H.: From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat. Rec. 262(4), 398–419 (2001).  https://doi.org/10.1002/ar.1049CrossRefGoogle Scholar
  3. 3.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988).  https://doi.org/10.1007/BF00133570CrossRefzbMATHGoogle Scholar
  4. 4.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988).  https://doi.org/10.1016/0021-9991(88)90002-2MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007).  https://doi.org/10.1007/s11263-006-8711-1CrossRefGoogle Scholar
  6. 6.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. AMS, vol. 153. Springer, New York (2003).  https://doi.org/10.1007/b98879CrossRefzbMATHGoogle Scholar
  7. 7.
    Maurer, C., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003).  https://doi.org/10.1109/TPAMI.2003.1177156CrossRefGoogle Scholar
  8. 8.
    Müller, R.: Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling. Osteoporos. Int. 16(2), S25–S35 (2005).  https://doi.org/10.1007/s00198-004-1701-7CrossRefGoogle Scholar
  9. 9.
    Ruff, C., Holt, B., Trinkaus, E.: Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am. J. Phys. Anthropol. 129(4), 484–498 (2006).  https://doi.org/10.1002/ajpa.20371CrossRefGoogle Scholar
  10. 10.
    Rüegsegger, P., Koller, B., Müller, R.: A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58(1), 24–29 (1996).  https://doi.org/10.1007/BF02509542CrossRefGoogle Scholar
  11. 11.
    Schulte, F., Lambers, F., Kuhn, G., Müller, R.: In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48(3), 433–442 (2011).  https://doi.org/10.1016/j.bone.2010.10.007CrossRefGoogle Scholar
  12. 12.
    van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A.: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1), 69–81 (1995).  https://doi.org/10.1016/0021-9290(95)80008-5CrossRefGoogle Scholar
  13. 13.
    Schulte, F., et al.: Strain-adaptive in silico modeling of bone adaptation-a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1), 485–492 (2013).  https://doi.org/10.1016/j.bone.2012.09.008CrossRefGoogle Scholar
  14. 14.
    Huiskes, R., Ruimerman, R., Van Lenthe, G., Janssen, J.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704–706 (2000).  https://doi.org/10.1038/35015116CrossRefGoogle Scholar
  15. 15.
    Schulte, F., et al.: Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS ONE 8(4), e62172 (2013).  https://doi.org/10.1371/journal.pone.0062172CrossRefGoogle Scholar
  16. 16.
    Christen, P., et al.: Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 5, 4855 (2014).  https://doi.org/10.1038/ncomms5855CrossRefGoogle Scholar
  17. 17.
    Christen, P., Müller, R.: In vivo visualisation and quantification of bone resorption and bone formation from time-lapse imaging. Curr. Osteoporos. Rep. 15(4), 311–317 (2017).  https://doi.org/10.1007/s11914-017-0372-1CrossRefGoogle Scholar
  18. 18.
    Manske, S., Zhu, Y., Sandino, C., Boyd, S.: Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 79, 213–221 (2015).  https://doi.org/10.1016/j.bone.2015.06.006CrossRefGoogle Scholar
  19. 19.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928).  https://doi.org/10.1007/BF01448839MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDe-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999).  https://doi.org/10.1006/jcph.1999.6345MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of 14th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1987, pp. 163–169. ACM (1987).  https://doi.org/10.1145/37401.37422
  22. 22.
    Burt, L., Liang, Z., Sajobi, T., Hanley, D., Boyd, S.: Sex- and site-specific normative data curves for HR-pQCT. J. Bone Miner. Res. 31(11), 2041–2047 (2016).  https://doi.org/10.1002/jbmr.2873CrossRefGoogle Scholar
  23. 23.
    Buie, H., Campbell, G., Klinck, R., MacNeil, J., Boyd, S.: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4), 505–515 (2007).  https://doi.org/10.1016/j.bone.2007.07.007CrossRefGoogle Scholar
  24. 24.
    Kameo, Y., Adachi, T.: Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mech. 225(10), 2833–2840 (2014).  https://doi.org/10.1007/s00707-014-1202-5CrossRefGoogle Scholar
  25. 25.
    Yang, I., Tomlin, C.: Identification of surface tension in mean curvature flow. In: Proceedings of 2013 American Control Conference, pp. 3284–3289. IEEE (2013).  https://doi.org/10.1109/ACC.2013.6580338
  26. 26.
    Yang, I., Tomlin, C.: Regularization-based identification for level set equations. In: Proceedings of 52nd Annual Conference on Decision and Control - CDC 2013, pp. 1058–1064. IEEE (2013).  https://doi.org/10.1109/CDC.2013.6760022

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bryce A. Besler
    • 1
    • 2
    • 4
  • Leigh Gabel
    • 2
    • 4
  • Lauren A. Burt
    • 2
    • 4
  • Nils D. Forkert
    • 3
    • 4
  • Steven K. Boyd
    • 2
    • 4
  1. 1.Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryCanada
  2. 2.McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryCanada
  3. 3.Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
  4. 4.Department of Radiology, Cumming School of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations