Advertisement

Deep Volumetric Shape Learning for Semantic Segmentation of the Hip Joint from 3D MR Images

  • Guodong Zeng
  • Guoyan ZhengEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11404)

Abstract

This paper addresses the problem of segmentation of the hip joint including both the acetabulum and the proximal femur in three-dimensional magnetic resonance images. We propose a fully convolutional volumetric auto encoder that learns a volumetric representation from manual segmentation in order to regularize the segmentation results obtained from a fully convolutional network. We further introduce a super resolution network to improve the segmentation accuracy. Comprehensive results obtained from 24 patient data demonstrated the effectiveness of the proposed framework.

Keywords

Deep learning Hip joint Semantic segmentation Shape learning Super resolution 

References

  1. 1.
    Laborie, L., Lehmann, T., Engesæter, I., Eastwood, D., Engesæter, L., Rosendahl, K.: Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology 260(2), 494–502 (2011).  https://doi.org/10.1148/radiol.11102354CrossRefGoogle Scholar
  2. 2.
    Leunig, M., Beaulé, P., Ganz, R.: The concept of femoroacetabular impingement: current status and future perspectives. Clin. Orthop. Relat. Res. 467(3), 616–622 (2009).  https://doi.org/10.1007/s11999-008-0646-0CrossRefGoogle Scholar
  3. 3.
    Clohisy, J., Knaus, E., Hunt, D., Lesher, J., Harris-Hayes, M., Prather, H.: Clinical presentation of patients with symptomatic anterior hip impingement. Clin. Orthop. Relat. Res. 467(3), 638–644 (2009).  https://doi.org/10.1007/s11999-008-0680-yCrossRefGoogle Scholar
  4. 4.
    Perdikakis, E., Karachalios, T., Katonis, P., Karantanas, A.: Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skeletal Radiol. 40(11), 1441–1447 (2011).  https://doi.org/10.1007/s00256-011-1111-9CrossRefGoogle Scholar
  5. 5.
    Xia, Y., Fripp, J., Chandra, S., Schwarz, R., Engstrom, C., Crozier, S.: Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 58(20), 7375–7390 (2013).  https://doi.org/10.1088/0031-9155/58/20/7375CrossRefGoogle Scholar
  6. 6.
    Xia, Y., Chandra, S., Engstrom, C., Strudwick, M., Crozier, S., Fripp, J.: Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching. Phys. Med. Biol. 59(23), 7245–7266 (2014).  https://doi.org/10.1088/0031-9155/59/23/7245CrossRefGoogle Scholar
  7. 7.
    Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010).  https://doi.org/10.1016/j.media.2010.01.006CrossRefGoogle Scholar
  8. 8.
    Arezoomand, S., Lee, W., Rakhra, K., Beaulé, P.: A 3D active model framework for segmentation of proximal femur in MR images. Int. J. Comput. Assist. Radiol. Surg. 10(1), 55–66 (2015).  https://doi.org/10.1007/s11548-014-1125-6CrossRefGoogle Scholar
  9. 9.
    Chandra, S., Xia, Y., Engstrom, C., Crozier, S., Schwarz, R., Fripp, J.: Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med. Image Anal. 18(3), 567–578 (2014).  https://doi.org/10.1016/j.media.2014.02.002CrossRefGoogle Scholar
  10. 10.
    Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., et al. (eds.) Proceedings of Neural Information Processing Systems – NIPS 2012, vol. 25, pp. 1097–1105. NIPS (2012)Google Scholar
  11. 11.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition – CVPR 2015, pp. 3431–3440. IEEE (2015). https://doi.org/10.1109/CVPR.2015.7298965
  12. 12.
    Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40763-5_31CrossRefGoogle Scholar
  13. 13.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_49CrossRefGoogle Scholar
  14. 14.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of 4th International Conference on 3D Vision – 3DV 2016, pp. 565–571. IEEE (2016). https://doi.org/10.1109/3DV.2016.79
  15. 15.
    Dou, Q., et al.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017).  https://doi.org/10.1016/j.media.2017.05.001CrossRefGoogle Scholar
  16. 16.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of 32nd International Conference on Machine Learning – ICML 2015, vol. 37, pp. 448–456. PLMR (2015)Google Scholar
  17. 17.
    Dahl, G., Sainath, T., Hinton, G.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP 2013, pp. 8609–8613. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6639346
  18. 18.
    Karasawa, K., et al.: Multi-atlas pancreas segmentation: atlas selection based on vessel structure. Med. Image Anal. 39, 18–28 (2017).  https://doi.org/10.1016/j.media.2017.03.006CrossRefGoogle Scholar
  19. 19.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993).  https://doi.org/10.1109/34.232073CrossRefGoogle Scholar
  20. 20.
    Yeghiazaryan, V., Voiculescu, I.: An overview of current evaluation methods used in medical image segmentation. Technical report CS-RR-15-08, University of Oxford, Department of Computer Science, UK (2015)Google Scholar
  21. 21.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of 23rd International Conference on Machine Learning – ICML 2006, pp. 233–240. ACM (2006). https://doi.org/10.1145/1143844.1143874
  22. 22.
    Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudhakar, P., Vaidya, V.: Learning and incorporating shape models for semantic segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 203–211. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66182-7_24CrossRefGoogle Scholar
  23. 23.
    Nosrati, M., Hamarneh, G.: Incorporating prior knowledge in medical image segmentation: a survey. arXiv:1607.01092 (2016). https://arxiv.org/abs/1607.01092

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland

Personalised recommendations