Advertisement

Triangular Forms

  • Pauline BernardEmail author
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 479)

Abstract

In this chapter, triangular forms are considered, namely systems made of a cascade of integrators, and of nonlinearities depending in a triangular way on the state. In order to observe those systems, it is standard to use a high gain in the correction terms, which is able to compensate for the nonlinearities if taken sufficiently large. The structure–homogeneity–of the correction terms must be adapted to the regularity of the nonlinearities–Lipschitz, Hölder, continuous.

References

  1. 1.
    Andrieu, V., Praly, L., Astolfi, A.: Nonlinear output feedback design via domination and generalized weighted homogeneity. In: IEEE Conference on Decision and Control (2006)Google Scholar
  2. 2.
    Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated gain and homogeneous correction terms. Automatica 45(2), 422–428 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Astolfi, A., Praly, L.: Global complete observability and output-to-state stability imply the existence of a globally convergent observer. Math. Control Signals Syst. 18(1), 1–34 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barbot, J., Boukhobza, T., Djemai, M.: Sliding mode observer for triangular input form. In: IEEE Conference on Decision and Control, vol. 2, pp. 1489–1490 (1996)Google Scholar
  6. 6.
    Bernard, P., Praly, L., Andrieu, V.: Observers for a non-Lipschitz triangular form. Automatica 82, 301–313 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Besançon, G.: Further results on high gain observers for nonlinear systems. In: IEEE Conference on Decision and Control, vol. 3, pp. 2904–2909 (1999)Google Scholar
  8. 8.
    Besançon, G., Ticlea, A.: An immersion-based observer design for rank-observable nonlinear systems. IEEE Trans. Autom. Control 52(1), 83–88 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bornard, G., Hammouri, H.: A high gain observer for a class of uniformly observable systems. In: IEEE Conference on Decision and Control (1991)Google Scholar
  10. 10.
    Cruz-Zavala, E., Moreno, J.A.: Lyapunov functions for continuous and discontinuous differentiators. In: IFAC Symposium on Nonlinear Control Systems (2016)Google Scholar
  11. 11.
    Emelyanov, S., Korovin, S., Nikitin, S., Nikitina, M.: Observers and output differentiators for nonlinear systems. Doklady Akademii Nauk 306, 556–560 (1989)zbMATHGoogle Scholar
  12. 12.
    Filippov, A.: Differential Equations with Discontinuous Right-hand Sides. Mathematics and its applications. Kluwer Academic Publishers Group, Dordrecht (1988)CrossRefGoogle Scholar
  13. 13.
    Gauthier, J.P., Bornard, G.: Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Autom. Control 26, 922–926 (1981)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems application to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gauthier, J.P., Kupka, I.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  16. 16.
    Hammouri, H., Bornard, G., Busawon, K.: High gain observer for structured multi-output nonlinear systems. IEEE Trans. Autom. Control 55(4), 987–992 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust. Nonlinear Control 24 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Levant, A.: Higher-order sliding modes and arbitrary-order exact robust differentiation. In: Proceedings of the European Control Conference, pp. 996–1001 (2001b)Google Scholar
  19. 19.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ortiz-Ricardez, F.A., Sanchez, T., Moreno, J.A.: Smooth lyapunov function and gain design for a second order differentiator. In: IEEE Conference on Decision and Control, pp. 5402–5407 (2015)Google Scholar
  22. 22.
    Praly, L., Jiang, Z.: Linear output feedback with dynamic high gain for nonlinear systems. Syst. Control Lett. 53, 107–116 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: Proceedings of the American Control Conference (2005)Google Scholar
  24. 24.
    Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: IEEE American Control Conference, pp. 4708–4715 (2005)Google Scholar
  25. 25.
    Qian, C., Lin, W.: Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans. Autom. Control 51(9) (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sanfelice, R., Praly, L.: On the performance of high-gain observers with gain adaptation under measurement noise. Automatica 47, 2165–2176 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Smirnov, G.: Introduction to the Theory of Differential Inclusions. Graduate studies in mathematics, vol. 41. American Mathematical Society, Providence (2001)Google Scholar
  28. 28.
    Tornambe, A.: Use of asymptotic observers having high gains in the state and parameter estimation. In: IEEE Conference on Decision and Control, vol. 2, pp. 1791–1794 (1989)Google Scholar
  29. 29.
    Yang, B., Lin, W.: Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Trans. Autom. Control 49(7), 1069–1080 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zeitz, M.: Observability canonical (phase-variable) form for nonlinear time-variable systems. Int. J. Syst. Sci. 15(9), 949–958 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”University of BolognaBolognaItaly

Personalised recommendations