Generalizations and Examples

  • Pauline BernardEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 479)


When the sufficient conditions presented in the previous chapter are not satisfied, it is shown here how the problem may still be solved by changing or choosing in a more cunning way the original transformation itself. Some applicative examples such as an image-based aircraft landing are also considered to see how this whole methodology extends to time-varying transformations.


  1. 1.
    Andrieu, V., Eytard, J.B., Praly, L.: Dynamic extension without inversion for observers. In: IEEE Conference on Decision and Control, pp. 878–883 (2014)Google Scholar
  2. 2.
    Bernard, P., Praly, L., Andrieu, V.: Expressing an observer in preferred coordinates by transforming an injective immersion into a surjective diffeomorphism. SIAM J. Control Optim. 56(3), 2327–2352 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gibert, V.: Analyse d’observabilité et synthèse d’observateurs robustes pour l’atterrissage basé vision d’avions de ligne sur des pistes inconnues. Ph.D. thesis, Ecole Centrale de Nantes (2016)Google Scholar
  4. 4.
    Gibert, V., Burlion, L., Chriette, A., Boada, J., Plestan, F.: New pose estimation scheme in perspective vision system during civil aircraft landing. In: IFAC Symposium on Robot Control (2015)Google Scholar
  5. 5.
    Gibert, V., Burlion, L., Chriette, A., Boada, J., Plestan, F.: Nonlinear observers in vision system: application to civil aircraft landing. In: European Control Conference (2015)Google Scholar
  6. 6.
    Praly, L., Marconi, L., Isidori, A.: A new observer for an unknown harmonic oscillator. In: Symposium on Mathematical Theory of Networks and Systems (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”University of BolognaBolognaItaly

Personalised recommendations