Reconstruction of Functional Connectivity from Multielectrode Recordings and Calcium Imaging

  • Paolo Bonifazi
  • Paolo Massobrio
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 22)


In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits’ reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.


Cross-correlation Functional connectivity Calcium imaging Spontaneous activity Spike trains 


  1. Aertsen, A., & Gerstein, G. L. (1985, August). Evaluation of neuronal connectivity: Sensitivity of crosscorrelation. Brain Research, 340, 341–354.CrossRefGoogle Scholar
  2. Becchetti, A., Gullo, F., Bruno, G., Dossi, E., Lecchi, M., & Wanke, E. (2012). Exact distinction of excitatory and inhibitory neurons in neural networks: A study with GFP-GAD67 neurons optically and electrophysiologically recognized on multielectrode arrays. Frontiers in Neural Circuits, 6, 63.CrossRefGoogle Scholar
  3. Beckenbach, E. F. (1956). Modern mathematics for the engineer. New York: McGraw-Hill.Google Scholar
  4. Bedenbaugh, P., & Gerstein, G. L. (1997, Auguest 15). Multiunit normalized cross correlation differs from the average single-unit normalized correlation. Neural Computation, 9, 1265–1275.Google Scholar
  5. Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., et al. (2009). Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip, 9, 2644–2651.CrossRefGoogle Scholar
  6. Bonifazi, P., Difato, F., Massobrio, P., Breschi, G. L., Pasquale, V., Levi, T., et al. (2013). In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses. Frontiers in Neural Circuits, 7, 40.CrossRefGoogle Scholar
  7. Bonifazi, P., Goldin, M., Picardo, M. A., Jorquera, I., Cattani, A., Bianconi, G., et al. (2009, December 4). GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science, 326, 1419.Google Scholar
  8. Bonifazi, P., Ruaro, M. E., & Torre, V. (2005, December 1). Statistical properties of information processing in neuronal networks. European Journal of Neuroscience, 22, 2953–2964.CrossRefGoogle Scholar
  9. Bovetti, S., Moretti, C., Zucca, S., Dal Maschio, M., Bonifazi, P., & Fellin, T. (2017, January 5). Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain. Scientific Reports, 7, 40041.CrossRefGoogle Scholar
  10. Brillinger, D. R., Bryant, H. L., & Segundo, J. P. (1976). Identification of synaptic interactions. Biological Cybernetics, 22, 213–228.CrossRefGoogle Scholar
  11. Bullmore, E., & Sporns, O. (2009, March). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.CrossRefGoogle Scholar
  12. Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  13. Dahlhaus, R., Eichler, M., & Sandkuhler, J. (1997, November 7). Identification of synaptic connections in neural ensembles by graphical models. Journal of Neuroscience Methods, 77, 93–107.CrossRefGoogle Scholar
  14. Eichler, M., Dahlhaus, R., & Sandkuhler, J. (2003). Partial correlation analysis for the identification of synaptic connections. Biological Cybernetics, 89, 289–302.CrossRefGoogle Scholar
  15. Eversmann, B., Jenkner, M., Paulus, C., Hofmann, F., Brederlow, R., Holzapfl, B., et al. (2003). A 128/spl times/128 CMOS bio-sensor array for extracellular recording of neural activity. In 2003 IEEE international solid-state circuits conference, 2003. Digest of technical papers. ISSCC (Vol. 1, pp. 222–489).CrossRefGoogle Scholar
  16. Fejtl, M., Stett, A., Nisch, W., Boven, K. H., & Möller, A. (2006). Advances in network electrophysiology: Using multi-electrode arrays. New York: Springer.Google Scholar
  17. Feldt, S., Bonifazi, P., & Cossart, R. (2011, May). Dissecting functional connectivity of neuronal microcircuits: Experimental and theoretical insights. Trends in Neuroscience, 34, 225–236.CrossRefGoogle Scholar
  18. Friston, K. J. (2011, January 1). Functional and effective connectivity: A review. Brain Connectivity, 1, 13–36.CrossRefGoogle Scholar
  19. Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.CrossRefGoogle Scholar
  20. Grun, S., & Rotter, S. (Eds.) (2010). Analysis of parallel spike trains (Series in computational neuroscience). New York: Springer.Google Scholar
  21. Herzog, N., Shein-Idelson, M., & Hanein, Y. (2011, October). Optical validation of in vitro extra-cellular neuronal recordings. Journal of Neural Engineering, 8, 056008.CrossRefGoogle Scholar
  22. Kanagasabapathi, T. T., Massobrio, P., Barone, R. A., Tedesco, M., Martinoia, S., Wadman, W. J., et al. (2012). Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device. Journal of Neural Engineering, 9, 036010.CrossRefGoogle Scholar
  23. Kanner, S., Goldin, M., Galron, R., Ben Jacob, E., Bonifazi, P., & Barzilai, A. (2018, July 31). Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 8025–8030.CrossRefGoogle Scholar
  24. Lefebvre, B., Yger, P., & Marre, O. (2016, November). Recent progress in multi-electrode spike sorting methods. Journal of Physiology, Paris, 110, 327–335.CrossRefGoogle Scholar
  25. Lichtman, J. W., & Denk, W. (2011, November 4). The big and the small: Challenges of imaging the brain’s circuits. Science, 334, 618–623.CrossRefGoogle Scholar
  26. Marissal, T., Bonifazi, P., Picardo, M. A., Nardou, R., Petit, L. F., Baude, A., et al. (2012). Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus. Nature Communications, 3, 1316.CrossRefGoogle Scholar
  27. Marom, A., Shor, E., Levenberg, S., & Shoham, S. (2017). Spontaneous activity characteristics of 3D “optonets”. Frontiers in Neuroscience, 10, 602.CrossRefGoogle Scholar
  28. Marom, S., & Shahaf, G. (2002, February). Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quarterly Reviews of Biophysics, 35, 63–87.CrossRefGoogle Scholar
  29. Massobrio, P., Pasquale, V., & Martinoia, S. (2015). Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks. Scientific Reports, 5, 10578.CrossRefGoogle Scholar
  30. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103, 8577–8582.CrossRefGoogle Scholar
  31. Orlandi, J. G., Stetter, O., Soriano, J., Geisel, T., & Battaglia, D. (2014). Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PLoS One, 9, e98842.CrossRefGoogle Scholar
  32. Pastore, V. P., Massobrio, P., Godjoski, A., & Martinoia, S. (2018). Identification of excitatory-inhibitory links and network topology in large scale neuronal assemblies from multi-electrode recordings. PLoS Computational Biology, 14, e1006381.CrossRefGoogle Scholar
  33. Pereda, E., Quiroga, R. Q., & Bhattacharya, J. (2005, September 1). Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 77, 1–37.CrossRefGoogle Scholar
  34. Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal spike train and stochastic point processes I. the single spike train. Biophysical Journal, 7, 391–418.CrossRefGoogle Scholar
  35. Poli, D., Pastore, V. P., Martinoia, S., & Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13, 026023.CrossRefGoogle Scholar
  36. Poli, D., Pastore, V. P., & Massobrio, P. (2015). Functional connectivity in in vitro neuronal assemblies. Frontiers in Neural Circuits, 9, 57.CrossRefGoogle Scholar
  37. Rey, H. G., Pedreira, C., & Quian Quiroga, R. (2015, October 1). Past, present and future of spike sorting techniques. Brain Research Bulletin, 119, 106–117.CrossRefGoogle Scholar
  38. Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2, 539–550.CrossRefGoogle Scholar
  39. Schreiber, T. (2000, July 10). Measuring information transfer. Physical Review Letters, 85, 461–464.CrossRefGoogle Scholar
  40. Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O., & Bullmore, E. T. (2015). Emergence of Rich-Club topology and coordinated dynamics in development of hippocampal functional networks in vitro. The Journal of Neuroscience, 35, 5459–5470.CrossRefGoogle Scholar
  41. Spanne, A., & Jörntell, H. (2015, July 1). Questioning the role of sparse coding in the brain. Trends in Neurosciences, 38, 417–427.CrossRefGoogle Scholar
  42. Sporns, O. (2013). Structure and function of complex brain networks. Dialogues in Clinical Neuroscience, 15, 247–262.PubMedPubMedCentralGoogle Scholar
  43. Stetter, O., Battaglia, D., Soriano, J., & Geisel, T. (2012). Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Computational Biology, 8, e1002653.CrossRefGoogle Scholar
  44. Tibau, E., Valencia, M., & Soriano, J. (2013). Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures. Frontiers in Neural Circuits, 7, 199.CrossRefGoogle Scholar
  45. Van Bussel, F., Kriener, B., & Timme, M. (2011, February 1). Inferring synaptic connectivity from spatio-temporal spike patterns. Frontiers in Computational Neuroscience, 5, 3.PubMedPubMedCentralGoogle Scholar
  46. Ventura, V., Cai, C., & Kass, R. E. (2005). Statistical assessment of time-varying dependency between two neurons. Journal of Neurophysiology, 94, 2940.CrossRefGoogle Scholar
  47. Weisenburger, S., & Vaziri, A. (2018). A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Annual Review of Neuroscience, 41, 431–452.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paolo Bonifazi
    • 1
    • 2
  • Paolo Massobrio
    • 3
  1. 1.Biocruces Health Research InstituteBarakaldoSpain
  2. 2.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  3. 3.Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS)University of GenovaGenoaItaly

Personalised recommendations